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This report presents information intended to assist 
discussions about planning for adaptation to the 
impacts of climate change in the Wet Tropics NRM 
Cluster (WTC) region. It is clear that impacts of climate 
change are already being felt and that there will be 
unavoidable impacts even with immediate mitigation of 
greenhouse gas emissions. Continued high levels of 
greenhouse gas emissions will cause exceptional rates 
and scales of change in the future, and adaptation 
across all sectors of society will be inevitable. Planned 
adaptation will have better outcomes for communities 
than ad hoc, reactive responses, which would most 
likely be triggered by catastrophic events. 

Transformational change will be required to adapt to 
predicted climate change impacts. We will need to 
undergo fundamental shifts in how we perceive and 
manage for biodiversity conservation, how we value 
ecosystem services, where we live and operate in the 
landscape, our agricultural products and practices, the 
ways in which we engage with Indigenous people and 
promote sustainable development in Indigenous 
communities, how we develop community adaptive 
capacity, engagement between science and policy, and 
how we plan. Strong support from all levels of 
government will be required and mitigation of 
greenhouse gas emissions will be critical. However, 
community-based, participatory planning processes can 
proactively build the capacity of communities to 
respond and adapt to climate change impacts. Regional 
Natural Resource Management (NRM) bodies are 
leaders in this process and have the capability and 
responsibility to negotiate pathways to adaptation that 
integrate ecological, social, cultural and economic 
aspirations of their communities.  

Successful adaptation to climate change will depend on 
the ability to detect and make changes in response to 
environmental, economic and social feedbacks, rather 
than maintaining usual practices. The implementation 
of individual actions that will cumulatively lead to 
adaptation at regional scales requires strategic 
planning. On-going collaborative partnerships between 
researchers and NRMs will improve vision-setting, 
strategy development and monitoring of outcomes. 
Integration with other relevant planning agencies and 
regulatory processes to commit to implementation 

priorities will improve the ability of NRM plans to 
deliver effective adaptation outcomes for communities. 
Effective monitoring and evaluation of actions within an 
adaptive planning/ management framework will be 
essential to implementing effective adaptation 
pathways. 

While climate change will impact all sectors, 
communities and industries that are dependent on 
natural resources will be particularly vulnerable. In the 
WTC region, this includes the primary industries and 
tourism, and Indigenous people. Climate change 
impacts in many Indigenous communities in the WTC 
are compounded by pervasive issues of justice and well-
being resulting from historical disadvantage, as well as 
by the remoteness and challenging environmental 
conditions associated with many communities. 

There is variation among sectors of the NRM 
community in terms of their capacity for resilience in 
the face of climate change impacts. For example, some 
individuals and certain sectors of the primary industries 
show a well-developed ability to respond to changes in 
environmental and economic conditions, whereas this 
adaptive capacity is low in other parts of the industry. 
There will be benefits for businesses that undertake 
early, proactive and planned adaptation. Many of the 
adaptation opportunities for the farming sector are 
consistent with current ‘best practice’ and won’t 
require radical changes, although diversification into 
new products will likely be important. Ecosystem-based 
fisheries management has potential as a key adaptive 
strategy in this industry. Climate adaptation for mining 
will require addressing more significant site-specific 
challenges. Provision of information, research and 
development linkages and development of community 
support networks can increase the adaptive capacity of 
the primary industries.  

Indigenous people have an inherently high capacity for 
resilience through their traditional, adaptive knowledge 
systems. There will be different suitable adaptation 
pathways for different Indigenous people, communities 
and groups. Continued formal involvement in the 
development of NRM strategies, improved land tenure 
security, governance and technical skills can contribute 
to the formulation of successful adaptation pathways.  

Executive Summary 
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Natural systems in general have low adaptive capacity 
and there will be unavoidable losses with projected 
climate change. Triggers and thresholds are almost 
impossible to determine, but eight of the ten Australian 
ecosystems that are considered to be most vulnerable 
to tipping points are located within the WTC region. 
Adaptation options for biodiversity conservation are 
broadly consistent with many current management 
strategies and managing to reduce existing threats and 
stressors will improve the capacity of species to adapt 
to climate change. However, climate change introduces 
additional threats that will require fundamental shifts in 
approaches to conservation. For example, focus will 
need to shift from protecting ecosystems in their 
current states to enabling their adaptation to altered 
conditions. In addition to protection, restoration will be 
a critical part of climate change adaptation strategies 
for biodiversity. Biodiverse carbon plantings have the 
potential to help mitigate CO2, increase functional 
connectivity and increase the amount of good quality 
habitat available in the landscape. Fire management 
that accommodates changed environmental conditions 
will be an important part of enabling species’ 
adaptation to climate change, as well as managing 
invasive species. The protection and rehabilitation of 
coral reefs will be critical. An appropriate system for 
payments for ecosystem services will support 
development of adaptation strategies that have cross-
sectoral benefits.  

Adaptation options for infrastructure include changing 
building design (e.g., elevation of infrastructure in low-
lying coastal areas), reducing dependence on single 
modes of infrastructure (e.g., developing localised 
power generation and supply networks), and 
developing new industries (e.g., salt-tolerant 
agricultural crops) and technologies (e.g., water storage 
solutions). Retreat options for infrastructure involve 
relocation from impacted areas. Strategies of retreat 
currently have less political support in general, but will 
eventually become inevitable under current trajectories 
of greenhouse gas emissions. Options to Protect 
infrastructure from climate change impacts generally 
involve engineering solutions (e.g., sea walls), many of 
which may be inconsistent with biodiversity 
conservation objectives. 

Substantial barriers to adaptation currently exist. Prime 
among these are a pre-occupation with the perceived 
costs of adaptation, frequent shifts in related 
government policy, and ignorance, misinformation and 
scepticism in the general community. The capacity for 
transformational adaptation is constrained in particular 
by the uncertainty surrounding projected impacts. At 
least in the short to medium term, adaptation action is 
more likely to be incremental.  

Rationale and scope  

A previous report (Hilbert et al. 2014) outlined impacts 
of climate change in the WTC region, framed by the 
priority issues identified by NRM partners (Appendix 
A1). In this present report, authors have considered 
potential adaptation options in relation to these 
impacts, and included additional specific issues 
identified by NRM partners (Appendix A2). The report 
has undergone scientific peer-review as well as detailed 
review by WTC NRM partners. 

This report reflects the range of ideas presented in 
scientific literature relating to adaptation options for 
different sectors. This report is not an exhaustive 
review of adaptation options, nor does it present 
integrated analysis of the ecological, social, cultural and 
economic costs and benefits of different adaptation 
options. Adaptation options will interact in complex 
ways among sectors. The priority and desirability of 
different adaptation options, together with trade-offs 
between competing objectives, will need to be 
negotiated with regional NRM communities. This report 
is intended to inform and support that negotiation 
process.  

Catherine Moran, Stephen Turton, Rosemary Hill 
Editors 
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Stream 2 of the Commonwealth Government’s Regional 
NRM Planning for Climate Change Fund supports the 
project “Knowledge to manage land and sea: A 
framework for the future” run by a consortium of 
scientists from James Cook University (JCU) and CSIRO. 
This report is the second major product of the 
consortium project, building on the first report: Climate 
Change Issues and Impacts in the Wet Tropics NRM 
Cluster Region (Hilbert et al. 2014). This second report 
provides syntheses of current knowledge about 
potential adaptation pathways and opportunities in 
response to climate change in the Wet Tropics Cluster 
(WTC) region (see below) across all relevant NRM 
sectors. The report is framed by the specific topics and 
issues defined by the NRM groups in the Wet Tropics 
Cluster (WTC) region (Appendix A), reflecting the 
planning processes and priorities of these groups as 
well as the characteristics of their regional 
communities. This report has two major aims: 

1. To provide a review of potential adaptation 
pathways and opportunities across all NRM sectors 
in the WTC region, including a review of potential 
options for adaptation of species to climate change  

2. To provide preliminary information about particular 
directions for adaptation in the Wet Tropics Cluster, 
based on collaboration with the four NRM bodies 
via the Brokering Hub. 

For consistency with the first report, this report 
presents key messages around each topic in bold type 
at the beginning of each chapter. Key messages for 
NRM groups are also summarised at the beginning of 
each chapter. These key messages represent our 
syntheses of plausible adaptation pathways and 
opportunities based on expert opinion of authors and 
also substantiated by published material, including from 
international sources. Each key message is followed by 
a brief explanation of the underlying scientific evidence 
with a small number of key citations to the relevant 
literature. In most cases there is a fair amount of 
uncertainty associated with the key messages and they 
should be understood as best estimates based on the 

scientific literature and expert opinion. Much 
uncertainty is due to climate model variability in 
relation to changes in rainfall amount and timing, 
critical variables for many NRM sectors in the WTC 
region. Furthermore, despite increasing climate change-
related research in general, there is a limited or lack of 
explicit research on potential climate change impacts or 
adaptation opportunities in several areas and some 
sectors in the WTC region, e.g. infrastructure, 
ecosystem services and primary industries. Conversely, 
there is better knowledge of adaptation pathways for 
biodiversity in some parts of the region, although 
baseline data are lacking for many areas. Finally, 
uncertainty persists around the extent to which climate 
change impacts will be mitigated through reduction in 
greenhouse gas emissions, creating uncertainty around 
nature and extent of impacts and associated adaptation 
actions that will be required. NRM adaptation pathways 
also depend heavily on the broader set of adaptation 
options (or lack of) undertaken by the community and 
society at large. 

This report contains ten chapters separated into two 
volumes. Volume 1 contains the executive summary, an 
introductory chapter and two chapters dealing with 
NRM adaptation pathways and opportunities for 
biodiversity and ecosystem services. Volume 2 contains 
chapters that discuss NRM adaptation pathways and 
opportunities for infrastructure, industry, Indigenous 
communities and broader regional society, as well as 
planning frameworks and evolving methodologies for 
developing adaptation pathways in NRM groups. In 
Chapters 2-5 we provide summary tables of specific 
adaptation options in relation to climate change risks, 
as identified within the body of these chapters. 
Remaining chapters deal more with higher-level 
principles or frameworks for climate change adaptation, 
or describe climate adaptation methodologies and 
tools, rather than identifying specific adaptation 
actions.  

A range terms and phrases associated with climate 
adaptation are used throughout the documents. 
Authors have tried to explain these as necessary, but 

1. Introduction 

Stephen M. Turton, Rosemary Hill and Catherine Moran 
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Table 1.1 provides a summary of key terms used in this 
report that may assist NRM planners.  

Table 1.1 Definition of key terms used in this report. 

KEY TERMS USED IN THE REPORT 

1. Adaptation to climate change is the adjustment, in 

natural or human systems, in response to actual or 

expected climatic changes or their effects, which 

moderates harm or exploits beneficial opportunities. 

Various types of adaptation can be distinguished, 

including anticipatory, autonomous and planned 

adaptation. 

2. Autonomous adaptation is adaptation that does not 

constitute a conscious response to climate stimuli but is 

triggered by ecological changes in natural systems and 

by market or welfare changes in human systems. 

3. Vulnerability is defined as a function of the character, 

magnitude, and rate of climate change variation to 

which a system is exposed, its sensitivity, and its 

adaptive capacity.  

4. Planned adaptation is adaptation that is the result of 

deliberate policy decision, based on awareness that 

conditions have changed or are about to change and 

that action is required to return to, maintain, or achieve 

a desired state. Planned adaptation measures are 

conscious policy options or response strategies, often 

multi-sectoral in nature, aimed at altering the adaptive 

capacity of systems by facilitating specific adaptations. 

5. Adaptive capacity is the ability of a system to adjust to 

climate change (including climate variability and 

extremes) to moderate potential damages, to take 

advantage of opportunities, or cope with the 

consequences. Adaptive capacity of a system is its 

capacity to change in a way that makes it better 

equipped to deal with potential impacts. 

6. Exposure is the degree, duration and/or extent to 

which a system is likely to be in contact with a 

perturbation e.g. cyclones, drought, fire. Defined as the 

external side of vulnerability. It is influenced by a 

combination of the probability and magnitude of 

climate change. 

7. Sensitivity is the extent to which a human or natural 

system can absorb impacts without suffering long-term 

harm or other significant state change, i.e. an internal 

component of vulnerability. It is also defined as the 

extent to which changes in climate will affect the 

system in its current form. 

8. Resilience is the capacity of a system to absorb 

disturbance, undergo change and still retain essentially 

the same function, structure, identity, and feedbacks. 

9. Incremental adaptation is adaptation actions where 

the central aim is to maintain the essence and integrity 

of a system or process at a given scale. 

10. Maladaption is actions or inaction that may lead to 

increased risk of adverse climate-related outcomes, 

increased vulnerability to climate change, or diminished 

welfare, now or in the future. 

Source:  Wilson & Turton 2011, IPCC 2014 

 

Geographical scope 
Australia’s 56 NRM regions have been grouped into 
eight clusters through which funding for Element 2 of 
Stream 2 is delivered. The eight clusters are based on 
some broad common characteristics such as land use, 
climate and how these are anticipated to change 
(Figure 1.1). In total, Element 2 of Stream 2 is 
comprised of nine projects, one for each of the eight 
clusters, and a National Project delivering cross-
boundary regional level information on issues that are 
national in scale, such as changes to biodiversity and 
invasive species resulting from climate change.  

This report focuses on four geographically distinct NRM 
regions grouped in the Wet Tropics Cluster, shown in 
Figure 1.1.These are the Mackay-Whitsunday, Wet 
Tropics, Cape York, and the Torres Strait regions, which 
are managed by Reef Catchments NRM, Terrain NRM, 
Cape York NRM, and the Torres Strait Regional 
Authority respectively. 
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Figure 1.1 The Wet Tropics Cluster region (shaded). 

Significance of the Wet Tropics Cluster 
Region 

This cluster contains a broad range of landscapes and 
seascapes including globally significant savannas, the 
vast majority of Australia’s tropical rainforests, 
wetlands and low lying tropical islands. It also contains 
a high proportion of the Great Barrier Reef catchment. 
The region contains the Wet Tropics World Heritage 
Area and the Great Barrier Reef World Heritage Area 
with discussion for a third World Heritage Area 
nomination for parts of Cape York Peninsula. Arguably, 
this cluster supports more species overall than any 
other NRM cluster with many endemic plants and 
animals. Only the South West of Western Australia is 
richer in plant species.  

The climate change threat to biodiversity has been 
especially well documented for the Wet Tropics 

rainforests (Hilbert et al. 2001; Kanowski 2001; Williams 
et al. 2003; Hilbert et al. 2004; Williams et al. 2008; 
Hilbert et al. 2014). While much of the cluster’s 
rainforest is in conservation reserves (especially the 
Wet Tropics World Heritage Area) some important 
areas are not, including many fragments and recovering 
forests on abandoned, previously cleared land. 
Management of off-reserve lands in response to climate 
change present both important opportunities and 
potential threats to biodiversity (Dunlop et al. 2012). 

Along with very high biodiversity values, there are 
numerous and substantial economic and cultural values 
including extensive and intensive agriculture (McKeon 
et al. 2009, Biggs et al. 2013), tourism, mining, fisheries 
(Stoeckl & Stanley 2007) and large areas of Aboriginal 
lands. Much of the cluster’s area is ‘highly contested’ 
with multiple and sometimes conflicting demands for 
the region’s natural resources. Climate change is likely 
to exacerbate the issues and challenges. Climate change 
impacts and adaptation studies suggest significant 
changes in all sectors that will require factoring climate 
change into forward looking NRM planning across the 
cluster.  

Both extensive and intensive primary production are 
likely to be challenged by climate change requiring 
adaptations in where, what and how food is produced 
in the region. The possible adaptation responses of this 
sector – as all others – will have important effects, 
positive or negative, on other sectors. There are 
adaptation opportunities provided by the Australian 
Government’s Direct Action Plan and Emissions 
Reduction fund (see Chapter 3, this report), that if 
managed properly, could assist climate adaptation in 
this sector while also favouring biodiversity 
conservation.  

Traditional owners are important inhabitants and land 
managers in many areas of the cluster who are likely to 
be highly affected by climate change in numerous ways 
(see Chapter 6). The approximate proportion of 
Indigenous people is 50% in Cape York, more than 90% 
in the Torres Strait and 12% in the Wet Tropics. 
Indigenous people living in remote areas within this 
cluster have a high sensitivity to climate change 
induced ecosystem change because of the close 
connection for them between healthy ‘country’ and 
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their physical and mental well-being and their cultural 
practices (Green 2006). Other issues affecting their 
community's welfare are urgent and pressing and these 
will require strategies and policies to strengthen 
adaptation capacity of communities for climate-change 
responses (Petheram et al. 2010). Communities located 
on the low-lying islands of Torres Strait are particularly 
vulnerable to sea level rise and increasingly intense 
storm surges caused by more extreme weather (Green 
et al. 2009). 

Natural resource management in the regions covered 
by this cluster has long been contentious due to its 
highly contested values in multiple sectors. The need 
for climate change adaptation in most of these sectors 
accentuates the challenge and requires an integrated 
approach.  

Climate projections the Wet Tropics 
Cluster Region 

The WTC region may expect significant changes in its 
climate this century and policy makers will need to 
incorporate the latest climate science knowledge and 
data into their adaptive management and planning 
systems. Table 1.2 provides a summary of climate 
projections for the WTC region over this century. 

Table 1.2 Climate projections for the Wet Tropics Cluster 
region this century 

CLIMATE PROJECTIONS FOR THE WTC REGION 

 Air and ocean temperatures are expected to increase in 

response to increasing Greenhouse Gas (GHG) 

emissions 

 We can expect more hot days and fewer cold days in 

the future 

 There is considerable uncertainty about how climate 

change may affect rainfall across WTC region due to 

naturally high rainfall variability but with higher GHG 

emissions there is evidence that the dry season will be 

longer and drier while the wet season will remain 

similar 

 Extreme rainfall intensity may increase in the future 

 The intensity of tropical cyclones is likely to increase in 

the future while overall cyclone frequency may 

decrease 

 Sea levels should continue to rise but rates of change 

may vary at the sub-regional level 

 Frequency and height of storm surges are expected to 

increase due a combination of rising sea levels and 

more intense tropical cyclones 

 Fire weather conditions are expected to worsen with 

increased frequency or intensity of extreme fire days 

 Solar radiation is expected to decrease in winter (dry 

season) and spring (wet season build up), and increase 

in autumn (monsoon retreat season) under the highest 

emission scenario; however there is a large spread of 

model simulations 

 Small decreases in relative humidity are favoured over 

increases during summer and autumn periods, with 

little change in winter and increases more likely in 

spring, especially under the highest emission scenario 

 Evapotranspiration is projected to increase in all 

seasons 

 Average wind speeds are expected to increase across 

eastern parts of the WTC region 

 Ocean acidity will increase in line with increases in 

atmospheric CO2 

Source: Turton 2014 

Approach and method 
A key component of the Stream 2 project was the 
adoption of a WTC ‘Brokering Hub’ which formally 
brings together Stream 2 researchers and NRM regional 
organisations (Cape York NRM, Reef Catchments, 
Terrain NRM and Torres Strait Regional Authority) to 
co-define priorities, objectives, processes, outputs and 
outcomes for the project, much like a project steering 
committee (Bohnet et al. 2013, Figure 1.2). This 
arrangement is intended to promote a collaborative 
approach to the research program and to facilitate 
communication between Streams 1 and 2. The 
collaboration moves through a co-research cycle that 
includes stages that provide for system analysis, 
processes and tools to support knowledge translation 
and integration, and updating through social learning 
(Figure 1.3). This report forms part of the socio-
ecological systems analysis phase of the project and will 
feed in to the knowledge integration phase (Figure 1.3). 
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Figure 1.2 Co-research approach that promotes long-term 
system well-being and collective learning 

Source: Bohnet et al. 2013 

The Stream 2 research component of the Brokering Hub 
is divided into three ‘Science Nodes’ (Figure 1.2). The 
production of this draft report has been co-ordinated 
by the brokering hub, and researchers from all three 
Science Nodes have contributed, as well as NRM 
partners. NRM groups defined existing knowledge and 
priority information gaps through different processes; 
initially they convened a meeting to articulate their 
‘preferred processes and priorities’ to inform the 
development of project bids by research consortia in 
the region when Stream 2 funding was announced in 
late 2012. The key issues of concern identified in this 
document formed the foundation for the science 
synthesis report (Hilbert et al. 2014). During 2013 and 
2014, NRM groups in the WTC identified additional 
detail in relation to their information needs for NRM 
planning during two workshops, one a joint WTC-
National Environmental Research Program (NERP) 
initiative and the other organised by the Participatory 
Scenarios Research Node. Finally, NRM groups were 
invited in November 2013 and March 2014 to clarify or 
add any further priority information needs. The current 
list of NRM priority information needs (Appendix A) for 
the current report reflect the issues NRM project 
partners expect will be important when engaging with 
their regional communities to develop adaptation 
pathways. NRM partners have requested discussion of 
high-level principles around approaches to adaptation 
and monitoring outcomes, presentation of case study 

examples, identification of barriers and enablers, as 
well as information on a suite of specific issues .The list 
of NRM interests and concerns covers a wide range of 
issues in many sectors and experts in all of the fields 
identified were sought to contribute to the first science 
synthesis report and to this draft adaptation pathways 
and opportunities report. While this report is part of 
the system analysis stage of the co-research cycle, 
many knowledge integration tasks are underway 
through these interactions. 

 

Figure 1.3 The co-research cycle for knowledge integration in 
NRM Climate Adaptation 

Coping range, adaptive 
capacity and vulnerability 
Among the different NRM sectors, natural and modified 
ecosystems have the lowest capacity to adapt to rapid 
climate change; even below 2°C temperature change – 
relative to 1990 - there will be significant negative 
effects on natural ecosystems (see Figure 1.4), due 
mainly to their narrow coping ranges. Development of 
adaptation strategies is a priority especially for natural 
ecosystems, agricultural systems, coastal communities 
and water security, all of which have relatively narrow 
coping ranges as well as adaptive capacity (Figure 1.4). 
Above 4°C of warming all NRM sectors will be highly 
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vulnerable and well beyond their adaptive capacity to 
cope. 

 

Figure 1.4 Figure shows the aggregated relative vulnerability 
to climate change for key sectors for Australia and New 
Zealand region. The vertical axis shows increasing levels of 
global mean temperature rise from 0 to 7°C, while the 
colours show how much change the sector can cope with 
normally (green), how much it can adapt to autonomously 
(yellow), and when it becomes vulnerable (red) 

Source: Stafford Smith and Ash 2011 

For successful climate adaptation in NRM, strong 
linkages are required among researchers, policy makers 
and practitioners because successful adaptation is the 
output of appropriate decision-making among all these 
actors. For example, policy makers can ensure that 
water and drought policies accord with successful farm 
adaptation and do not impede it. Researchers can help 
farmers to select suitable crop varieties, to achieve 
better water use efficiency measures, and to assist 
farmers to obtain the skills to achieve such outcomes 
(Howden et al. 2007; Stokes and Howden 2011).  

As some uncertainties exist about the magnitude of 
impacts of climate change, making decisions about 
appropriate adaptation options is difficult (Stafford 
Smith et al. 2011). For example, decisions about water 
savings measures in consideration of drought 
conditions should be taken as soon as possible 
(Howden et al. 2007) but such decisions are difficult 
when trajectories are uncertain. Early development of 
technologies, skills and policies are likely to provide 
more benefits to the community (Stokes and Howden 
2011). 

A CSIRO survey of industry and government 
organisations found that Australians hold mixed 
attitudes to climate adaptation and this was linked with 
knowledge and beliefs of their particular organisation 
about climate change (Howden et al. 2007). They also 
found that industry organisations were more likely to 
undertake adaptation planning when it was perceived 
that their particular industry was vulnerable to climate 
change. It is therefore important to work closely with 
stakeholders to determine their vulnerability to climate 
change to better assist them to adapt to climate 
change. To obtain the benefits of climate adaptation 
stakeholders need confidence that the climate is 
changing and that inaction is not an option, the 
motivation to avoid negative impacts and seize 
opportunities, and wide communication and 
demonstration of new benefits of climate change 
adaptation (Stokes and Howden 2011). Therefore the 
very early part of adaptation is about conveying 
information to various NRM stakeholders why 
adaptation is needed and what are the perceivable 
opportunities of climate change and what are the risks 
of not doing anything. This task is already being 
undertaken by the WTC NRM groups; it is intended that 
this will be supported by outputs of the Stream 2 
project (e.g., this and the previous impacts and issues 
synthesis report, together with associated fact sheets 
and short film), together with participation of Stream 2 
researchers in NRM stakeholder workshops and other 
participatory processes. 

The effectiveness of a community to adapt to climate 
change is influenced by the adaptive capacity of the 
respective community. Assessing the adaptive capacity 
of different stakeholders to climate change is crucial. 
Through assessment of adaptive capacity it is possible 
to determine and rectify the factors that may hinder 
the successful adaptations of a community and also to 
identify the broader areas where action is required 
(Stokes and Howden 2011). An assessment of adaptive 
capacity of different stakeholders of the WTC region 
will help policy makers and planners to take actions to 
increase the adaptive capacity of the stakeholders 
towards implementing successful climate adaptation.  



 

 Adaptation Pathways and Opportunities for the Wet Tropics NRM Cluster region 

 
7 

Adaptation pathways and 
opportunities 
Adaptation to climate change will engage all of society, 
including industry sectors, communities and individuals 
(Stafford Smith and Ash 2011). Domains that are 
emerging as key priorities for natural resource 
management and planning are: 

 infrastructure, including roads, ports, coastal 
structures, water and energy supplies and buildings 

 coastal zones, estuaries, wetlands and all areas at 
risk of sea-level rise, storm surges and floods 

 agriculture, the food supply, and other primary 
production, including forestry and mining 

 other climate-dependent industries, e.g. tourism 

 the natural environment, including all the 
biodiversity contained within it 

 increased biosecurity risk 

 recognising maladaption across key NRM sectors. 

Three areas are critical for successful adaptation to 
climate change (Stafford Smith and Ash 2011): 

1. decision-making and choices, i.e. how to go about it 

2. the development of specific solutions to climate 
challenges, i.e. technical and other 

3. the analysis of barriers to adoption of systems and 
technologies that will help us adapt. 

Opportunities and threats are both components of 
adaptation to climate change. In the first science 
synthesis report (Hilbert et al. 2014) we identified key 
climate change threats to the various NRM sectors in 
the WTC region. We also need to identity the potential 
opportunities that may come our way due to climate 
change but with an understanding that there may be 
few opportunities in the WTC region (Stafford Smith 
and Ash 2011). These include: 

 ‘no-regrets’ or low regrets measures, i.e. things we 
can do which make good sense anyway, e.g. water 
and biodiversity conservation and carbon 
sequestration 

 ‘win-win’ activities, where adapting to climate 
change generates new industries (e.g. renewable 
energy), income, employment or other desirable 
community outcomes, e.g. carbon sequestration. 

If we are to build ‘pathways’ to adaptation we need to 

 

Figure 1.5 A pathway for adaptation engagement with associated drivers and barriers. 

Source: Stafford Smith and Ash 2011 

Source: Stafford Smith and Ash 2011 
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position our NRM sectors, regions and communities so 
that they are flexible and ready to change and this need 
to happen now (Stafford Smith and Ash 2011). This will 
require the knowledge and tools to build the necessary 
biophysical, social and institutional capacity to adapt to 
climate change. Figure 1.5 demonstrates the stages 
NRM communities or organisations are likely to 
transition through along an adaptation pathway, 
including identifying key drivers and barriers or 
obstacles to climate change adaptation. Recent studies 
also emphasise that actors have the capability to come 
together for path- generation in response to changed 
conditions in the future—building the conditions and 
skills for future path-generation is therefore important 
to adaptation futures (Garud et al. 2010). 

Figure 1.5 is an example of a ‘classic’ adaptation 

pathway where decision-making processes eventually 
leads to adaptation planning. Figure 1.6 conceptualises 
the classic adaptation pathway approach, incorporating 
a series of learning decision cycles over time (Wise et al. 
2014). In this approach, some chains of decisions lead 
to maladaptive outcomes over time, but there may be 
other alternatives that are adaptive. The strongest 
colour shows a satisfactory pathway that can be plotted 
into the future. 

Wise et al. (2014) argue that as the world seems 
increasingly likely to face a future with more than 2°C 
warming, it becomes increasingly important to move 
beyond impacts and vulnerabilities to adaptation 
action. Moreover, they propose that the classic view on 
pathways (Figure 1.6) does not always represent the 
decision contexts where the current status of the 

 

Figure 1.6. The ‘classic’ conceptualisation of climate adaptation pathways 

Source: Wise et al. 2014 
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system and its future trajectory are heavily influenced 
by the past. Figure 1.7 provides a conceptual 
framework to trace ‘adaptation pathways’ through an 
adaptive landscape where the boundaries between 
adaptive and maladaptive responses are changing over 
time, due to biophysical changes, but also due to 
changes in social and institutional context, including the 
actions of other decision-makers who may perceive 
different adaptation pathways (Wise et al. 2014). 
Importantly, if decision-makers are not currently in the 
adaptive space (e.g. coastal local councils in the WTC 
region), as at decision point b, then all pathways may 
be maladaptive. For this example, transformation of the 

institutional arrangements or societal values will be 
needed, either through dramatic intervention (pathway 
5) or through strongly directed incremental change 
(pathway 6). Both pathways will require intervention 
from higher levels of governance, probably driven by 
responses to natural disasters or catastrophic events 
(Wise et al. 2014). 
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Figure 1.7. An adaptive landscape affected by changing climate, but also other drivers and other actors’ responses. Circle arrows 
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arrows lead to maladaptive dead-ends; dashed arrows represent more-or-less transformational pathway segments; and green 
arrows show antecedent pathways prior to the current decision cycle (a) faced by the decision-maker of concern. 

Source: Wise et al. 2014 
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Precis 
The possibilities, issues and barriers pertaining to the adaptation of biodiversity to climate change show similarities 
across the different ecosystem types, species and processes of the Wet Tropics Cluster (WTC) region. Many 
management actions for climate change are the same as those already known to be important to biodiversity 
management: reduce or eliminate other anthropogenic stressors in order to build integrity and resilience into natural 
systems and ideally assist them to withstand the future pressures associated with climate change. However, climate 
change will also involve different approaches in many respects including facilitating change, especially the movement 
of species and ecosystems as they track suitable climate and conditions. In addition, ‘in situ’ conservation – managing 
species in their habitat, or facilitating their dispersal within the landscape - will be less expensive than ‘ex situ’ 
conservation (managing species outside their current range). The key messages associated with each of the topics 
addressed in this chapter are: 

TOPIC KEY MESSAGES 

Introduction 1. Successful biodiversity adaptation will be greatly constrained by the rate and ultimate degree of 

climate change. 

2. Climate change is a different kind of threat to biodiversity so adaptation will require different 

approaches. 

3. Effective adaptation strategies for biodiversity require awareness of the threat, reassessment of 

conservation objectives, and assessment of which conservation strategies will be most effective 

under climate change. 

4. Adaptation and mitigation actions in the biodiversity sector will interact in complex ways with 

adaptation in other sectors. 

2. Biodiversity – Adaptation pathways and 
opportunities 

IN A NUTSHELL 

 Impacts of climate change on biodiversity are already evident, and adaptation is required for the 

conservation of species and ecosystems. Managing to reduce current threats will improve the capacity of 

many species and ecosystems to adapt, but climate change introduces new and additional stressors that 

will require new conservation management approaches. 

 As well as protection, restoration (e.g., reforestation, coral reef rehabilitation) will be a critical part of 

climate change adaptation for biodiversity conservation. Ex situ actions may be important for highly 

threatened species. Adapting fire regimes will be an important challenge as well as management tool. 

 Successful adaptation management will require well-designed monitoring. 

April E. Reside, Daniela M. Ceccarelli, Joanne L. Isaac, David W. Hilbert, Cath Moran, John Llewelyn, 

Stewart Macdonald, Conrad J. Hoskin, Petina Pert and Jennifer Parsons 
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TOPIC KEY MESSAGES 

From maintaining 
ecosystems to 
enabling adaptation 

5. As ecological communities change, it may become more important to identify key processes, 

communities or functional types that contribute to the persistence of an ecosystem, and focus on 

protecting those. 

Conceptual and 
practical 
management options 
for conservation 

6. Conservation planning is concerned with where, when and how to act to achieve conservation 

objectives. Climate change will prove a challenge to current conservation planning, bringing novel 

conditions, including novel ecosystems, extreme events and unprecedented rates of change. 

Identifying and 
protecting key 
refugia 

7. Potentially the most cost-effective solution for biodiversity conservation under climate change is to 

identify and protect places in the landscape that will harbour many species from the worst impacts 

of climate change. 

8. Refugia need to safeguard long-term population viability. 

9. Refugia will need to be within the range of environmental parameters tolerable to species or 

ecological communities, or accessible if outside their current range. 

10. Ideal refugia will provide protection against multiple threats. 

11. Four different techniques used to identify refugia highlight the importance of the upland areas of 

the WTC Region as important refugia. 

12. The current protected areas encompass the areas that are known to be important for many species 

currently in the Australian Wet Tropics (AWT); however they are likely to miss the areas important 

for species in other parts of Australia that are likely to move into the AWT as a result of climate 

change. 

13. The southern upland rainforest of the AWT, particularly Hinchinbrook Island, Paluma Range and Mt 

Elliot, emerge as important refugia across all refugia analyses. 

14. The east coast of Australia has a high proportion of the area that will be climate change refugia 

when compared to the rest of Australia. 

15. The Australian Wet Tropics Bioregion is likely to be an important area for many species moving 

from the west and north. 

16. Adaptation for freshwater ecosystems must include the identification, protection and management 

of current and future refugia, especially in areas predicted to remain climatically relatively stable. 

17. The WTC region is expected to retain a large proportion of its freshwater biodiversity; therefore 

has conservation importance at a national level. 

18. Identifying refuges specific to freshwater biodiversity will require the consideration of refuge value, 

including abiotic factors, biotic factors, anthropogenic factors, spatial factors and temporal factors. 

19. Systematic conservation planning is an important tool for prioritising areas (e.g. refugia) for 

protection and restoration. 

20. Restoration will need to be a major part of climate adaptation. 
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TOPIC KEY MESSAGES 

Translocation as a 
management tool 

21. Any translocation of species is highly risky, with high failure rates, even to a historically occupied 

site. The factors that determine the success of translocations include: removing threats, number of 

individuals translocated and the genetic diversity of the founding population. The success of 

translocations is species and situation-specific and many factors need to be considered. 

22. The facilitation of gene flow between populations through assisted interbreeding can be used to 

enhance the evolutionary potential of populations. 

23. Isolated populations on the periphery of a species’ distribution may be adapted to the climatic 

conditions that will develop in core areas of the species’ distribution as climate change proceeds. 

24. Facilitating gene flow between lineages and/or from peripheral isolates to core populations could 

bolster the evolutionary potential of populations in the WTC Region. 

Triggers and 
thresholds 

25. The uncertainty inherent in climate change predictions makes it almost impossible to determine 

set triggers or thresholds beyond which ecosystems are likely to change irrevocably. 

26. Previous studies that have identified environmental thresholds have highlighted that these are 

often specific to a particular location or time. 

27. Among the 10 Australian ecosystems considered most vulnerable to tipping points, eight occur in 

the WTC Region. 

Fire management 28. Fire offers a number of opportunities for adaptation management, including prescribed burning of 

weedy flammable species and woody species encroaching on native grasslands. However, timing of 

burns will be critical to success in terms of biodiversity management. 

29. Fire management strategies will need to be adapted for different habitats and woodland types, and 

take into account faunal species within communities and previous seasons for fire management. 

Connectivity for 
movement and 
migration 

30. Adaptation efforts will need to be geared towards maintaining connectivity for assemblages to 

expand into new areas; impact minimisation or mitigation will need to target not just existing 

communities, but areas to the south (for tropical marine communities) and west (coastal 

communities). 

31. Increasing landscape connectivity is important for addressing conservation issues resulting from 

habitat fragmentation, and also for enabling shifts in species’ distributions in response to climate 

change. 

32. The amount of good quality habitat in a landscape is positively related to degree of connectivity. 

Linear features may also be important, especially at smaller spatial scales. 

33. Many current projects are based on increasing connectivity at different spatial scales 

34. Cleared and modified parts of the landscape may contribute to functional connectivity. 

35. One of the risks of increasing connectivity is assisting dispersal of problem species or disease. 

36. Connectivity can be improved by integrated farm management that includes protection of remnant 

habitat isolated trees and areas of regrowth, managing dams and modifying fence design. 

37. Restoration, including biodiverse carbon plantings, may be able to increase connectivity in the 

landscape. 

Invasive species 38. Existing invasive species threats should be controlled in order to increase the capacity of native 

biodiversity to adapt to climate change, and responses to climate change should not create new, or 

exacerbate existing, invasive species problems. 



 

 
 Adaptation Pathways and Opportunities for the Wet Tropics NRM Cluster region 

 
14 

TOPIC KEY MESSAGES 

Reproduction in 
vegetation 
communities 

39. Adaptation management actions will require a holistic approach, with the most cost-effective 

actions occurring for species in-situ. Ex-situ actions, for the most threatened species, may include 

seedbanking, genetic supplementation and/or assisted colonisation/dispersal and buyback of sites. 

40. The risks and benefits of adaptations should be taken into account, particularly with actions such 

as assisted gene flow. Seed-based risk assessment could be an option for some species from the 

WTC Region. 

41. Fire could be used as a management tool to promote seed germination in species adapted to a fire-

prone landscape, with a ‘sprouting’ life-history strategy, but timing and frequency of burning 

should be considered on a case-by-case basis. 

Adaptation for 
important species 
and communities 

42. Adaptation options for marine turtles are mainly consistent with a reduction in other more 

immediate impacts. 

43. Protecting nesting beaches is the most cost-effective strategy of increasing turtle populations. 

44. A number of options exist to safeguard the most important nesting beaches from beach loss and 

inundation, effectively providing a buffer zone. Adaptation options will need to be tailored to 

individual beaches and the particular threats they face. 

45. Maintaining connectivity to suitable nesting habitat near existing nesting beaches, especially 

inland, will make a considerable difference to the capacity for nesting turtles to adapt to sea level 

rise. 

46. The identification and protection of turtle feeding grounds will also provide an important buffer to 

changing climate conditions. 

47. Reductions in direct mortality of turtles from boat strike, fisheries by-catch, plastic debris and 

disease must be controlled, and stranded turtle rehabilitation need to continue. 

48. Protecting dugong feeding habitat and reducing direct anthropogenic mortality should be the 

priorities of any adaptation program. 

49. Dugong mortality can be minimised through fishing closures, gear modification and boating 

restrictions. 

50. Creating protected areas achieves rehabilitation of coral reef systems. 

51. The benefits of restoring coral reefs currently outweigh the costs, except at very localised scales. 

Opportunities for improving restoration options should be considered, as this may be increasingly 

necessary in the future. 

52. Structural complexity is the most important restoration focus for coral reef communities. 

53. Identifying future refugia for coral reef organisms, or even whole coral reef communities, will be a 

crucial factor in assisting coral reef adaptation to climate change. 

54. Inshore reefs of the GBR are urgently in need of improved water quality management, both at the 

catchment scale and locally (e.g. around ports). 

55. Many of the required strategies for adapting to climate change in the Torres Strait will ultimately 

protect both human populations and ecosystems. 

56. For islands large enough to benefit from conservation actions, adaptation measures will be similar 

to those described for coastal assemblages turtles, dugongs, seagrass beds and coral reefs.  

57. Due to their flying large distances, adaptation strategies for flying-foxes will need to be considered 
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TOPIC KEY MESSAGES 

via a whole- landscape approach. 

58. The increasing urbanisation of flying-fox camps will need to be managed through public education 

and when non-lethal dispersals occur the impacts will need to be closely monitored. 

59. The greatest limiting factor for flying-fox persistence in the future is the quality and availability of 

food resources. Adaptation planning for these species should start with a good understanding of 

spatial and temporal resource distribution. 

60. Species-specific adaptation actions for birds will need to take into account life history and ecology, 

but general management to increase the adaptive capacity of the entire WTC Region will benefit a 

suite of species. 

61. The most important adaptation actions for birds will be managing current stressors, and in situ 

management including refugia identification and protection. Expensive ex situ options such as 

captive breeding and assisted migration should be considered a last option. 

62. Landscape connectivity will greatly improve the cassowary’s chances of survival. 

Monitoring 
adaptation outcomes 

63. Adaptation actions will require monitoring to ascertain whether they have produced desirable 

outcomes and to inform changes that may be required; ideally, monitoring should be embedded 

within an adaptive management framework. 

64. Monitoring programs should be initiated with a specific objective, or set of objectives, in mind. 

65. Monitoring should be embedded within a framework that involves scientists, management 

agencies, funding agencies and government. 

66. The power to detect changes depends on the sampling design, methods, timing and frequency of 

the monitoring program. 

67. Communication is the key link in all steps of embedding monitoring within an adaptive 

management framework. 

Summary and 
conclusions 

68. Ignorance and misinformation of the general public is a major obstacle at all levels, leading to 

disinterest and inertia, and supporting a continued lack of political will. Monetary cost is the most 

common perceived barrier to adaptation actions. 

69. Conservation messages fail to capture the role of market mechanisms in persuading the public and 

governing bodies of the benefit and urgency of climate change adaptation. 

 

Introduction 

Successful biodiversity adaptation will be greatly 
constrained by the rate and ultimate degree of climate 
change. 

The rate of climate change expected in this century is 
exceptional and climate modelling consistently 
demonstrates that global mean temperatures will 
become very high from the perspective of the past tens 
of millions of years if greenhouse gas emissions 

continue to increase as they are now (IPCC 2013). 
Biodiversity is vulnerable to climate change, with 
limited intrinsic capacity to adapt to extremely high 
rates of rapid change. Even for warming of 2°C, there 
will be unavoidable loss of biodiversity, and predictions 
state that 4°C warming is quite likely without 
mitigation, with greater increases possible in the next 
century, if not sooner (Dunlop et al. 2012). So the 
efficacy of adaptation management plans and actions, 
while useful and important, are limited without 
adequate and timely reductions in emissions.  
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Climate change is a different kind of threat to 
biodiversity so adaptation will require different 
approaches. 

Climate change is a fundamentally different threat to 
biodiversity than other current threats such as habitat 
reduction and fragmentation, inappropriate and 
unsustainable land use, feral animals or invasive weeds. 
Consequently, in addition to the ongoing management 
of other threats, management of climate change 
impacts or adaptation will require different approaches.  

Dunlop et al. (2010) lists ways in which climate change 
is unique, including: 

 Climate change will lead to many different types of 
changes to species and ecosystems; some of those 
may result in loss, others will not.  

 The impacts of climate change will be experienced 
across all biodiversity and cannot be excluded in the 
way legal protection can reduce habitat loss or pest 
exclusion can reduce the impacts of invasive 
species.  

 The rate, scale and geographic extent of climate 
change and the responses of biodiversity make this 
a phenomenon of a much greater magnitude than 
other threats.  

 All biodiversity will be affected and change will be 
on-going for many decades, if not centuries, 
requiring a major revision of the objectives of 
development and conservation. 

 It is likely that systematic management responses 
are needed, as opposed to addition of climate 
adaptation bandaids to existing portfolios of 
conservation strategies.  

 There is considerable uncertainty about future 
environmental change, how biodiversity will 
respond, where the losses will be and what actions 
might reduce those losses. And there will be limited 
opportunity to reduce those uncertainties by 
learning from locations that experience the impacts 
first or from early signals since changes will be 
occurring everywhere and many changes will be 
hard to detect against the noise of environmental 
and ecological variation.  

 While much ecological and evolutionary theory is 
predictive when only one or two factors are varying, 
the circumstances of climate change make accurate 
prediction from available theories very difficult. For 
example, contrasting predictions about change and 
vulnerability can frequently be made from different 
strands of ecological theory.  

Effective adaptation strategies for biodiversity require 
awareness of the threat, reassessment of conservation 
objectives, and assessment of which conservation 
strategies will be most effective under climate change. 

Dunlop et al. (2010) adapted suggestions in Van 
Ittersum (1998) to propose three steps for developing 
effective responses to the impacts of climate change.  

1. There needs to be awareness and agreement that 
climate change will affect biodiversity and action is 
required. In regions where biodiversity decline is on-
going and significant due to other pressures (e.g. 
mammal decline in northern Australia), climate 
change adaptation may appear a lower priority. 
Likewise, it may appear in some regions that 
biodiversity will be resilient to climatic changes, or 
that little can be done about it. This step involves 
recognising that climate change will directly affect 
important biodiversity values and also affect the 
management of existing pressures. 

2. Conservation objectives need to be reassessed in 
light of the likelihood of significant and continual 
future changes in species and ecosystems. Assessing 
the feasibility of different conservation goals 
involves understanding how the full spectrum of 
climate change impacts will affect a wide range of 
biodiversity values and how it may be possible to 
reduce future biodiversity losses by managing 
differently in response to climate change. In practice 
it is hard to move substantially beyond identifying 
additional monitoring and management actions that 
might help preserve currently threatened species or 
ecosystems at this stage of climate change. Future-
oriented conservation strategies need to 
accommodate the likelihood of substantial changes 
in biodiversity at most locations. This step must 
include consideration of a wide range of types of 
change and values to be effective. The reassessment 
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of objectives should not to be bypassed in the haste 
to implement on ground action due to increasing 
sense of urgency.  

3. Assess which conservation strategies will be most 
effective under climate change. This includes 
considering the revised conservation objectives, the 
availability of information, the effectiveness of 
different options, and the impact of uncertainty on 
outcomes and effectiveness. The types of strategies 
that are most suitable, and how species or locations 
are targeted, will depend on these factors.  

To be effective and to promote adoption, adaptation 
strategies need to fit in with both local institutional and 
ecological contexts (Howden et al. 2007). The 
biodiversity chapter of the impacts report for the WTC 
Region (Hilbert et al. 2014) assists with step one by 
outlining the breadth and likely severity of the climate 
change threat. Step two will require a lengthy 
discussion among all stakeholders that is likely to be 
contentious and ongoing since it requires rethinking, 
perhaps radically, previous conservation paradigms. 
The third step, developing effective new conservation 
and adaptation strategies that address the new 
objectives will also be a lengthy process that might best 
be done through an adaptive management approach. 

Adaptation and mitigation actions in the biodiversity 
sector will interact in complex ways with adaptation in 
other sectors. 

The linkages between mitigation and adaptation are 
only beginning to be explored, but natural resource 
management is one of the areas with the greatest 
potential for synergies. Managing the trade-offs and 
promoting the synergies between adaptation and 
mitigation is likely to be important both in adaptation 
to climate change, and in limiting climate change to a 
level at which it is still possible to adapt (Campbell et al. 
2009). 

Ecosystem-based adaptation can be a cost-effective 
strategy to address the impacts of climate change, 
particularly in vulnerable areas where adaptive capacity 
is low (Campbell et al. 2009). For example, conserving 
coastal ecosystems can play a role in coastal protection 
and buffer the impacts of storms while maintaining fish 
breeding grounds; and help with climate change 

mitigation through large carbon storage potential. 
Conversely, engineering solutions such as sea walls 
might have detrimental effects on coastal ecosystems 
(see Connectivity for Movement and Migration section 
below).  

From maintaining ecosystems 
to enabling adaptation 
Historically, biodiversity conservation has emphasised 
the need to “protect” and “preserve” biodiversity, 
community structure, functional redundancy, 
ecosystem services and resilience; with the implication 
that the desire is to maintain current assemblages, 
communities and processes (Iwamura et al. 2010). 
However, given the predictions of species range shifts, 
and the fact that measured climatic changes have 
already surpassed predicted scenarios, this is 
unrealistic. Models of likely changes in suitable habitat 
for terrestrial, freshwater and marine species highlight 
areas that may serve as refugia in the future (See 
Refugia section below).  

As ecological communities change, it may become 
more important to identify key processes, 
communities or functional types that contribute to the 
persistence of an ecosystem, and focus on protecting 
those. 

Ecosystems are dynamic in nature, and change should 
be measured against an understanding of the 
background temporal and spatial dynamics in a system 
(Moritz and Agudo 2013a). Persistence of the whole 
ecosystem can rely on one or a few key species or 
processes that either build the habitat or maintain 
balance among the ecosystem components, often 
against a backdrop of periodic disturbances (Hedwall et 
al. 2013).  

Hannah et al. (2002a) outlined five key elements for 
what they termed “climate change–integrated 
conservation strategies (CCS)”:  

1. regional modelling of biodiversity response to 
climate change 

2. systematic selection of protected areas with climate 
change as an integral selection factor 
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3. management of biodiversity across regional 
landscapes, including core protected areas and their 
surrounding matrix, with climate change as an 
explicit management parameter 

4. mechanisms to support regional coordination of 
management, both across international borders and 
across the interface between park and non-park 
conservation areas  

5. provision of resources, from countries with the 
greatest resources and greatest role in generating 
climate change to countries in which climate-change 
effects and biodiversity are highest. 

Conceptual and practical 
management options for 
conservation 

Conservation planning is concerned with where, when 
and how to act to achieve conservation objectives. 
Climate change will prove a challenge to current 
conservation planning, bringing novel conditions, 
including novel ecosystems, extreme events and 
unprecedented rates of change.  

Under climate change, a static approach to ensuring the 
persistence and health of species and ecosystems 
within a conservation area will no longer be viable (e.g. 
Dawson et al. 2011). Management actions that 
safeguard species and ensure ecosystem persistence 
with changing conditions are considered no-regret or 
best practice strategies. 

The evidence shows that species react idiosyncratically 
to climate change, and that species assemblages and 
ecological communities are likely to be different to the 
way they are now (Moritz and Agudo 2013b). 
Therefore, we use species as a conservation unit for 
much of the discussion in this chapter. 

Garnett et al. (2013) identified adaptation strategies for 
multiple and single species and grouped them into 
three categories - immediate actions, ongoing actions 
and future action, for both inside a species’ current 
range (in-situ) and outside a species’ current range (ex-
situ) (Table 2.1). 

Table 2.1 Potential adaptation actions for ecosystems, 
communities and species 

Adaptation 
action 

IN-SITU EX-SITU 

Immediate 
Actions 

 Modelling of climate 

change refugia 

 Species surveys 

 Baseline taxon 

management and 

research 

 Land management 

 Land purchase 

 Assisted 

colonisation 

or dispersal  

 Assisted 

gene flow 

Ongoing 
Actions 

 Monitoring 

 Species 

management 

 Maintain and 

improve habitat 

quality 

 Control current 

stressors – 

introduced pests, 

clearance, etc. 

 Land management 

 Land purchase 

 Captive 

breeding 

 Cryogenic 

seedbanking 

Future 
Actions 

 Establish new 

habitat 

 Feasibility study of 

potential 

management 

 Marine refugia 

modelling 

 Genetic 

supplement

ation 

 Assisted 

colonisation 

Source: adapted from Garnett et al. (2013) 

 

In-situ conservation is likely to be the most cost-
effective way to increase adaptive capacity within a 
whole ecosystem, and suite of species including plants 
and fauna. However for the most endangered species, 
ex-situ actions, including captive breeding, re-
introductions from botanic gardens or zoo populations, 
seedbanking, and assisted migration, could be a last, 
expensive, option to save the species in the wild 
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(Garnett et al. 2013, see sections on Genetic 
translocation in the Wet Tropics and Considerations for 
Translocating Species). We discuss a range of in-situ and 
ex-situ conservation strategies below. 

Identifying and protecting key 
refugia 

Potentially the most cost-effective solution for 
biodiversity conservation under climate change is to 
identify and protect places in the landscape that will 
harbour many species from the worst impacts of 
climate change.  

The effect of climate change will not be experienced 
equally in all places because local weather systems and 
landscape features can act to amplify or dampen global 
patterns. By identifying parts of the landscape where 
species can retreat to and persist during the coming 
century (the timeline in which we can model); e.g. 
‘refugia’, we are in an informed position to minimise 
biodiversity loss through management of these key 
areas (Reside et al. 2013). Currently “refugia” is used to 
refer to areas large enough to support populations of 
species under changing climatic conditions 
(evolutionary timescales), while “refuges” shelter 
individuals from short-term disturbances (ecological 
timescales) (Ashcroft 2010; Keppel et al. 2012). 

Considerations for identifying 
terrestrial refugia 

Refugia will be important for species persistence if they 
provide protection from climate change, safeguard 
long-term population viability and evolutionary 
processes and minimise the potential for deleterious 
species interactions. However, refugia can only provide 
these protections if they are available and accessible to 
species under threat.  

Refugia need to safeguard long-term population 
viability. 

For refugia to safeguard evolutionary processes, areas 
need to be large enough to sustain populations without 
erosion of genetic diversity (Ovaskainen 2002), and 

networks should capture a sufficient range of habitats 
and areas to maintain within-species genetic diversity 
(Reside et al. 2014). This would enable the maintenance 
of longer-term evolutionary processes, such as 
speciation and lineage sorting. A focus on identifying 
refugia for vertebrates is likely to capture areas that will 
act as refugia for invertebrates and many plants 
(subject to proximity constraints) (Moritz et al. 2001). 
Minimum refugium size will also depend on site-based 
factors such as latitude, productivity and environmental 
heterogeneity. However, overall larger refugia, and 
networks of refugia, have a higher likelihood of 
maintaining viable populations of many species 
(Ovaskainen 2002).  

Refugia will need to be within the range of 
environmental parameters tolerable to species or 
ecological communities, or accessible if outside their 
current range. 

Refugia within the area the species currently occurs are 
the most beneficial because fewer range shifts are 
required. The ability of a species to reach refugia 
outside its current range will depend on the distance 
from the current species’ range, the dispersal ability of 
the species, the conditions in the intervening habitat 
(i.e., can individuals survive and reproduce), and 
whether or not there are any physical barriers to 
dispersal (e.g., rivers, mountain ranges). Factors such as 
competition from existing species may prevent arriving 
species from establishing. 

Refugia availability is influenced by landscape position 
and structure. High topographic variability can reduce 
the distance a species is required to move to track its 
climatic envelope (Tzedakis et al. 2002). However, the 
reverse is true for species already confined to mountain 
tops; in which case the nearest refugia may be at higher 
latitudes with intervening lowlands creating a dispersal 
barrier (Anderson et al. 2012). There may be similar 
barriers for coastal or lowland species (see below). 
Connectivity of habitats throughout the landscape will 
be important for facilitating species movement.  

Ideal refugia will provide protection against multiple 
threats. 
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Many locations can provide refugia from more than one 
climate change-related threat (Reside et al. 2014). In 
particular, the synergies between thermal, hydric and 
fire processes mean that refugia will often protect 
species from changes in these processes simultaneously 
(Figure 2.1). Areas of hydric refugia (e.g., streams, 
riparian zones) are often cooler (Dobrowski 2011) and 
less fire-prone than the surrounds as a result of riparian 
vegetation supported by the available water (Woinarski 
et al. 2000). Areas protected from direct sunlight have 
less evaporation and often less flammable material 
(Couper and Hoskin 2008). Mountains and rocky gorges 
provide thermal, mesic and fire refugia through physical 
barriers to radiation and fire; also water accumulation 
and subsequently less-flammable vegetation. 
Mountains also provide refugia from cyclones through 
protection from wind. 

Four different techniques used to identify refugia 
highlight the importance of the upland areas of the 

WTC Region as important refugia. 

 

Figure 2.1 High-complexity areas can offer 
multiple refugial properties. The thermal 
gradient of a daily maximum temperature in a 
mountainous region: the Australian Wet 
Tropics (AWT). High temperatures indicated by 
warmer colours on the continental and 
regional maps. This rugged area provides 
thermal, hydric, and fire refugial properties at 
both local and continental scales. The upland 
areas are cooler than their surrounds, and 
generate substantial orographic rainfall; this 
in turn promotes the growth of rainforest 
communities and the suppression of fire. 
Additional refugial properties are generated 
by steep gullies (which may protect against 
cyclonic events and strengthen the hydric 
refugial properties of the region). Data shown 
is at a 250 m resolution, adapted from Storlie 
et al. (2013) and Reside et al. (2014). The large 
AWT is the temperature gradient, shown in 
detail in the middle left square insert. The top 
small AWT is the elevation gradient, and the 
bottom small AWT is foliage projective cover, 
with green the more vegetated areas. 
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An Australia-wide analysis was conducted via funding 
from the National Climate Change Adaptation Research 
Facility to identify the most likely areas for terrestrial 
(Reside et al. 2013) and freshwater (James et al. 2013) 
refugia. The terrestrial refugia analysis was composed 
of several different techniques:  

1. Species distribution modelling, looking at areas of 
species richness current and projected into the 
future (Figure 2.2a)  

2. Composition turnover modelling which uses 
topographically adjusted radiation, climate and 
moisture surfaces at 250m resolution across 
Australia to show areas where species would have 
to move the least in time and space to remain in 
suitable conditions (Figure 2.2b),.  

3. The locations of current species- and lineage-level 
diversity for rainforest-endemic lizards that are 
likely to represent long term stability in conditions 
(Figure 2.2c)  

4. Finally, a conservation-planning exercise 

incorporating measures of irreplaceability and 
complementarity, based on endemic rainforest 
vertebrates of the Australian Wet Tropics (AWT) 
bioregion (Figure 2.2d).  

Analyses 1, 2 and 3 all extend beyond the AWT, 
however, the comparison for this region was made 
because each of these analyses did occur across this 
region (Reside et al. 2013). 

The comparison shows that while there are some 
differences, there is good spatial congruence for the 
important refugia areas. In particular, the refugial value 
of the upland areas in the north (Carbine, Windsor, 
Thornton), central (Bellenden-Ker/Bartle-Frere, Lamb 
and Herberton ranges) and south (Spec and Elliot) are 
all represented by each of the four analyses. These 
upland areas are recognised as being of conservation 
importance, centres of evolution and containing 
endemic species (Williams 1996). 

The current protected areas encompass the areas that 

 

Figure 2.2 Comparison of four analyses techniques to identify important refugia that all overlap the Australian Wet Tropics 
bioregion. a) the species distribution modelling; b) the compositional turnover modelling, or Generalised Dissimilarity Modelling; 
c) the Evolutionary refugia: current species- and lineage-level diversity for rainforest-endemic lizards; d) the Zonation 
conservation planning analysis; and e) the current protected areas within this region.  

Source: Adapted from Reside et al. (2013).  
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are known to be important for many species currently 
in the AWT; however they are likely to miss the areas 
important for species in other parts of Australia that 
are likely to move into the AWT as a result of climate 
change.  

The current protected areas (Figure 2.2e) mostly 
overlap with the important refugial areas predicted by 
the analyses 2, 3 and 4; however, large areas of refugia 
predicted by analysis 1 fall outside the current 
protected areas. The differences resulting from analysis 
1 in comparison to the others are almost certainly 
because this approach focuses on areas that will act as 
refuges for species that are moving from outside the 
AWT; namely, from the north and west, and moving 
uphill from the lowland areas of the western slopes. 
Additionally, these results do not account for 
endemism, or for specific habitats (e.g. rainforest 
endemics).  

The southern Atherton Tablelands, which contains the 
largest tract of upland rainforest, some of the highest 
diversity and abundance of rainforest species, and high 
productivity, was well-represented by analysis 4, and by 
the evolutionary refugia (analysis 3), but under-
represented by the two Australia-wide analyses (1 and 
2). In contrast, the northern uplands of Windsor and 
Carbine Uplands gain particularly high refugia status 
across all techniques (Moritz et al. 2005). In the case of 
Windsor, it is currently moderately depauperate in 
comparison to other upland areas, with a fauna that is 
likely to have been recolonised after rainforest 
contractions in the past. It is also likely to be 
particularly vulnerable to changes in future rainfall, 
which is difficult to predict given the uncertainty 
around rainfall projections. 

The southern upland rainforest of the AWT, 
particularly Hinchinbrook Island, Paluma Range and 
Mt Elliot, emerge as important refugia across all 
refugia analyses.  

Southern and upland areas of the AWT hold high 
importance, even if current diversity is low, because the 
upland areas hold high potential for species currently at 
lower elevations or lower latitudes to move into. The 
evolutionary refugia are also concentrated at high 
elevations in most regions, indicating their importance 

as refugia from past climate change. Despite the 
differences, the congruence across techniques gives us 
confidence that the techniques used in this study are 
able to point to high value refugia.  

The east coast of Australia had a high proportion of 
refugia when compared to the rest of Australia. 

The Australian east coast is likely to be important by 
providing an opportunity for species to track their 
climatic niche south, where temperatures are lower, at 
the same time finding hydric refugia. While in 
combination Tasmania and the east coast of mainland 
Australia will be crucial for species persistence into the 
future, the refugia found away from the east coast will 
be crucial for maintaining the unique fauna in habitats 
other than what is found on the east coast. 

The Australian Wet Tropics Bioregion is likely to be an 
important area for many species moving from the 
west and north of this region. 

The distributions of 1681 species were modelled in an 
Australia-wide analysis, and their distributions were 
projected onto future climate change scenarios. More 
details on the methods can be found in the report by 
Reside et al. (2013). The species were grouped by class: 
birds, frogs, mammals and reptiles. Areas across 
Australia were scored for being the most important for 
both the number of species moving into an area, as well 
as the number of species that are likely to retain their 
current occupancy into the future (Figure 2.3). This 
analysis shows that the east coast is highly likely to be 
very important for many species in the future, 
particularly the western edge of the Wet Tropics region. 
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Figure 2.3 A detailed view of the protected areas in 
Australia’s national reserve system, and how they relate to 
the projected refugia areas in 2085 for north-eastern 
Australia within the bioregion boundaries outlined in black. 
The detailed refugia are displayed, using the same scale as 
the refugia analysis, scaled from 1 (lowest priority) to 7 
(highest priority), as the highest possible score ‘8’ was not 
realised for any location.  

Source: Adapted from Reside et al. (2013) 

Considerations for identifying 
freshwater refugia 

Adaptation for freshwater ecosystems must include 
the identification, protection and management of 
current and future refugia, especially in areas 
predicted to remain climatically relatively stable.  

Species may shift in latitude and elevation (James et al. 
2013), therefore it may be appropriate to consider 
higher-latitude habitats of the same nature, and all 
higher elevation habitats, as valuable in the future. 
Previous modelling work has identified areas in which 
biodiversity may remain stable or even increase (James 
et al. 2013). Natural adaptive range shifts are least 
likely to happen the higher the elevation of the habitat, 

as freshwater habitats become increasingly isolated 
from each other with increased elevation (Bush et al. 
2012). 

The WTC Region is expected to retain a large 
proportion of its freshwater biodiversity; therefore 
has conservation importance at a national level. 

For freshwater fish and stream frog assemblages, the 
WTC Region is expected to remain relatively stable and 
retain a large proportion of its biodiversity (James et al. 
2013); this region should therefore be considered 
especially valuable, at a national level, for freshwater 
conservation. Fortunately, there is already a strong 
overlap between the current areas of high value for 
frogs and the protected area network (James et al. 
2013); strengthening compliance and education in 
these areas should be a priority. The WTC Region may 
also increase in refugial value for species expanding into 
the WTC Region from other areas (James et al. 2013). 
For crayfish, east coast habitat, which is already at 
higher elevations, is expected to contract or disappear 
entirely (James et al. 2013).  

Identifying refuges specific to freshwater biodiversity 
will require the consideration of refuge value, 
including abiotic factors, biotic factors, anthropogenic 
factors, spatial factors and temporal factors. 

James et al. (2013) modelled possible range expansions 
and contractions of Australian freshwater species 
(Figure 2.4), and discuss the merit of different 
adaptation options. Much of the scientific climate 
change adaptation literature has little to offer beyond 
recommending the protection of potential refuges 
(Table 2.2). James et al. (2013) further distinguish 
between refuges based on what kind of impact they 
might be protecting species from, such as warming and 
heatwaves (e.g. preservation or restoration of riparian 
vegetation cover, preserving and enhancing 
groundwater flows by minimising fine sediment input), 
flow regime changes, floods and droughts (provision of 
environmental flows and the maintenance of hydraulic 
habitat complexity), sea level rise and storm surges 
(maintaining, restoring or enhancing vegetation buffers 
to storm surges) and fire (protecting networked but 
unaffected reaches during the recovery phase, 
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managed relocation of individuals from neighbouring 
catchments or anthropogenic refuges). 

 

Figure 2.4 Proportionate change in environmental space 
suitable for freshwater biota between current and 2085 
under RCP8.5. Figures represent the 50th percentiles across 
18 GCMs. (Blue indicates gains in environments suitable for 
and red indicates losses in environments suitable) 

Source: James et al. (2013) 

 

 

 

 

Table 2.2 Specific adaptation options associated with the protection and/or enhancement of climate refuges for freshwater 
biodiversity.  

ADAPTATION OPTION REFERENCE TYPE OF ACTION TARGET 
BIODIVERSITY 
COMPONENT 

RELEVANT 
SCALE(S) 

Management of temperature inverted 
haloclines 

Stith et al. 2011 Manipulation of abiotic 
factors 

Florida 
manatees, 
temperature-
sensitive species 

Ecosystem 

Water movement and use of waves to 
prevent build up of wave intolerant 
invasives in shallow habitats 

Urban and Titus 
2010 

Manipulation of abiotic 
factors, Manipulation 
of biotic factors 

Native aquatic 
plants 

Habitat 

Retain riparian trees in groups in 
forestry clearing practices 

Chan-MacLeod and 
Moy 2007 

Manipulation of 
anthropogenic factors, 
manipulation of spatial 
factors 

Temperate 
pondbreeding 
frogs 

Ecosystem, 
landscape 

Provision of internal or peripheral 
islands in flood-prone habitats (e.g. 
reconstructed marsh) to provide 
'lifeboats' for resident populations and 
'landfalls' for flood-borne individuals 
swept downstream 

Sexton et al. 2007 Manipulation of abiotic 
factors, manipulation 
of spatial factors 

Semi-aquatic 
snakes 

Landscape 
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ADAPTATION OPTION REFERENCE TYPE OF ACTION TARGET 
BIODIVERSITY 
COMPONENT 

RELEVANT 
SCALE(S) 

Management of water levels (depths 
and duration) in 'holes' 

Kobza et al. 2004 Manipulation of abiotic 
factors, manipulation 
of temporal factors 

Native fish Habitat 

Creation of artificial refuges: creation 
of shallow channel for endangered fish 
where natural habitat destroyed 

Winemiller and 
Anderson 1997 

Manipulation of abiotic 
factors 

Endangered fish Ecosystem 

Use of storage weirs to provide 
permanent water during droughts 

Jacobsen and 
Kleynhans 1993 

Manipulation of abiotic 
factors, Manipulation 
of anthropogenic 
factors 

Aquatic biota Ecosystem, 
landscape 

Creation of stepping stone refuges or 
corridors for movement and dispersal 

Robson et al. 2008 Manipulation of spatial 
factors 

Aquatic biota Landscape 

Maintenance of water depth and 
duration in waterholes, pools etc. 

Robson et al. 2008 Manipulation of abiotic 
factors, manipulation 
of temporal factors 

Aquatic biota Habitat 

Maintenance of some flooding regimes 
for riparian vegetation, floodplain 
vegetation, floodplain wetlands, 
waterbird breeding, fish movement 
and food web dynamics 

Robson et al. 2008 Manipulation of biotic 
factors, Manipulation 
of anthropogenic 
factors 

Aquatic biota Ecosystem, 
catchment, 
landscape 

Prevention of physical disturbance of 
dry beds by limiting extraction, 
construction, off-road vehicle use 

Robson et al. 2008 Manipulation of 
anthropogenic factors 

Aquatic biota Ecosystem 

Protection of tributaries in good 
conditions 

Robson et al. 2008 Manipulation of spatial 
factors 

Aquatic biota Catchment, 
landscape 

Maintenance of physical structure and 
connectivity to provide refuges from 
flooding 

Robson et al. 2008 Manipulation of abiotic 
factors 

Aquatic biota Ecosystem, 
landscape 

Prevention of clearing of vegetation 
and woody debris 

Robson et al. 2008 Manipulation of 
anthropogenic factors 

Aquatic biota Ecosystem, 
landscape 

Prevention of draining of pasture 
wetlands and urbanisation 

Robson et al. 2008 Manipulation of 
anthropogenic factors 

Aquatic biota Ecosystem, 
catchment, 
landscape 

Topping up refuge pools Robson et al. 2008 Manipulation of abiotic 
factors 

Aquatic biota Habitat, 
ecosystem 

Piggy-backing flows on flood peaks Robson et al. 2008 Manipulation of abiotic 
factors, Manipulation 
of anthropogenic 
factors 

Aquatic biota Catchment 
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ADAPTATION OPTION REFERENCE TYPE OF ACTION TARGET 
BIODIVERSITY 
COMPONENT 

RELEVANT 
SCALE(S) 

Inundating lake and floodplain soils to 
replenish egg and seed banks 

Robson et al. 2008 Manipulation of abiotic 
factors 

Aquatic biota Ecosystem 

Dam removal Robson et al. 2008 Manipulation of 
anthropogenic factors 

Aquatic biota Ecosystem,c
atchment 

Removal of drainage systems Robson et al. 2008 Manipulation of 
anthropogenic factors 

Aquatic biota Ecosystem, 
catchment, 
landscape 

Revegetation Robson et al. 2008 Manipulation of biotic 
factors, Manipulation 
of anthropogenic 
factors 

Aquatic biota Ecosystem, 
catchment, 
landscape 

Replace woody debris Robson et al. 2008 Manipulation of abiotic 
factors 

Aquatic biota Ecosystem 

Managing and design anthropogenic 
habitat for use as refuges 

Robson et al. 2008 Manipulation of 
anthropogenic factors 

Aquatic biota Ecosystem, 
catchment, 
landscape 

Conserve forest remnants Suga & Tanaka 
2013 

Manipulation of spatial 
factors 

Macroinvertebr
ates 

Catchment, 
landscape 

Source: From James et al. (2013); see source for references 

 

High-quality refuges tend to have relatively stable 
abiotic characteristics, including high climatic and 
habitat stability (but high habitat heterogeneity at 
larger spatial scales), and a level of uniqueness within 
their surroundings. These abiotic characteristics then 
ideally support key biotic components such as sufficient 

prey, the presence of symbionts and the absence of 
competitors or predators. Favourable refuges may be 
compromised by anthropogenic threats that alter 
landscapes and connectivity patterns; minimising these 
threats will be a crucial component in the adaptation of 
freshwater ecosystems to climate change (Figure 2.5). 
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Prioritising areas for either restoration 
or protection 

Systematic conservation planning is an important tool 
for prioritising areas (e.g. refugia) for protection and 
restoration. 

The current global network of protected areas alone is 
inadequate for conservation (Rodrigues et al. 2004); 
therefore, additional protected areas are required as 
well as managing unprotected areas to maximise 
biodiversity outcomes will be required to halt 
biodiversity decline. Prioritising areas for protection 
against threats (e.g. protected area) or for restoration 
accounting for species long-term persistence is best 
achieved through systematic conservation planning 
(from here on “conservation planning”) (Margules and 
Pressey 2000; Watson et al. 2011).  

Biodiversity conservation, ecosystem service retention 
and carbon sequestration can all be achieved through 
prioritising areas for protection and restoration; and 
many studies are looking at ways to attain these 
simultaneous goals (Nelson et al. 2008; Thomas et al. 
2012). The first priority is to establish and strengthen 

mechanisms for protection of existing vegetation of 
high value. Loss of existing habitat should always be 
avoided where possible, as re-creation of habitat rarely, 
if ever, compensates for the biodiversity lost when an 
area is cleared or intensively modified (Bekessy et al. 
2010; Suding 2011), particularly for species requiring 
old-growth habitats (Lindenmayer et al. 2012b). 
Options for protecting existing habitats include national 
parks, World Heritage Areas, nature refuges, Ramsar 
wetland sites, incentives for protection on private land 
and local government zonings.  

Considerations for conservation planning for climate 
change adaptation: 

1. Identify species conservation requirements by 
predicting future distributions under climate change 
and identifying connectivity requirements for range 
adjustments.  

2. Set specific objectives: qualitative and quantitative.  

3. Identify and investigate trade-offs. 

4. Incorporate uncertainty. 

5. Locate the priority areas for protection and 
restoration using conservation planning software. 

 

Figure 2.5 Conservation prioritisation of 
freshwater river catchments within the study 
area based on 57 fish species for (a) current-
modelled species distributions (1990 
climate); (b) future-projected species 
distributions (RCP8.5, 2085, based on the 
median model across all 18 GCMs). 
Prioritisation is hierarchical so that the top 
2% of cells (red) are within the top 5% 
(burgundy) which are in turn within the top 
10% (pink), 25% (yellow), 50% (blue), 80% 
(dark blue), the lowest priority 20% are 
black.  

Source: James et al. (2013). 
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Trade-offs occur when one aspect of biodiversity is 
prioritised at the expense of another; but also when 
meeting other goals such as carbon sequestration. 
Trade-offs occur whether they are examined or not, 
therefore examination of trade-offs supports 
transparent decision making. 

Various conservation planning software tools are 
available, and their strengths and weaknesses have 
been reviewed (Moilanen et al. 2012). A range of 
reserve selection algorithms can be used with these 
software, each weighting different priorities. 

Restoration will need to be a major part of climate 
adaptation. 

Restoration is a major part of many climate adaptation 
action plans, including restoring degraded systems or 
national parks and increasing connectivity (Gillson et al. 
2013; Hannah et al. 2002b). Restoration has been 
shown to recover many ecosystem functions and many 
components of the original biodiversity (Chazdon 2008). 
Restoration will be required for areas identified as 
priority for future biodiversity that have become 
degraded (Shoo et al. 2011). Importantly, restoration 
can facilitate adaptation (restoring areas for species to 
move to) and mitigation (sequestering carbon) 
simultaneously, and be economically viable under 
particular carbon pricing schemes (Bekessy and Wintle 
2008). Natural or passive regeneration is the cheapest 
and often the most effective alternative, but is not 
always an option (Lamb et al. 2005). Conservation 
planning, monitoring and adaptive management are 
key to successful restoration projects, regardless of the 
end goal.  

Restoration best practice has evolved to incorporate 
considerations of climate change adaptation. In 
particular, focus has shifted away from prioritising local 
provenance seed and seedlings for planting. Instead, 
“composite provenancing” is recommended, which 
involves a mixture of seed from populations of 
increasing distance to mimic natural gene flow 
patterns, and increase the chance of bringing in climate 
change-resilient individuals (see Genetic translocation 
section) (Breed et al. 2013). 

The benefits of restoration can often outweigh the 
costs (De Groot et al. 2013). De Groot et al. (2013)’s 

meta-analysis of restoration projects across multiple 
biomes showed a fairly linearly increasing cost of 
restoration with increasing distance from the shore: 
freshwater and inland wetlands had higher costs than 
terrestrial ecosystems, but lower than coastal wetlands, 
coastal systems and coral reefs. However, they found 
that restoration of coral reefs and coastal areas had 
among the highest natural-capital benefits. Restoring 
terrestrial systems can be advantageous for increasing 
both the ecosystem function of the land, and reducing 
the impact of aquatic systems through reduced runoff, 
buffering river water temperatures, adding terrestrial 
carbon for aquatic food webs and providing woody 
material for fish habitat (Davies 2010). 

Translocation as a 
management tool 
Species are likely to face the loss or geographic shift of 
suitable habitat with climate change (Reside et al. 2012; 
Reside et al. 2013). Where species are unable to 
disperse to new areas with suitable conditions due to 
lack of dispersal ability, geographic or biological 
barriers, or insufficient population capacity (Åizling et 
al. 2009; Boulangeat et al. 2012), assisted colonisation 
has been discussed as a potential adaptation option 
(Harris et al. 2013; Hewitt et al. 2011; Hoegh-Guldberg 
et al. 2008; Lunt et al. 2013). Assisted colonisation has 
recently been conducted in the Wet Tropics, in regards 
to the translocation of individuals of a critically 
endangered frog from the last remaining wild 
population to a nearby historical site. This frog declined 
due to disease, not for climate-change associated 
threats. However, some lessons may be taken from this 
case study; and further considerations for genetic 
translocation are discussed below.  

General considerations for 
translocation 

Translocation is here considered to be movement of 
individuals from a wild population directly to another 
wild site. The important distinction is whether the 
translocation involves movement of individuals within 
the known historic range (in which case it can be 
considered a ‘reintroduction’) or movement of 
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individuals beyond the known range. The former of 
these has occurred many times in Australia and 
internationally, whereas the latter is highly 
controversial. Here we specifically discuss translocation 
within the known historic range as a potential 
management tool. 

Any translocation of species is highly risky, with high 
failure rates, even to a historically occupied site. The 
factors that determine the success of translocations 
include: removing threats, number of individuals 
translocated and the genetic diversity of the founding 
population. The success of translocations is species 
and situation-specific and many factors need to be 
considered. 

In September 2013, 40 individuals of the critically 
endangered Armoured Mist Frog (Litoria lorica) were 
translocated to a new site in an attempt to establish a 
second wild population. Extensive surveys had shown 
that there was only one population remaining of this 
species, on a stream on the western side of the Carbine 
Tableland (Conrad Hoskin & Robert Puschendorf, 
unpublished data). Like many Wet Tropics stream frogs, 
the species declined in the late 1980s and early 1990s 
due to chytrid fungus disease (Puschendorf et al. 2011). 
The translocation was conducted by Dr Conrad Hoskin 
(JCU) and the Threatened Species Unit of the 
Queensland Department of Environment and Heritage 
Protection. The translocation was to a site upstream, 
past a barrier of unsuitable habitat, to another 
extensive area of suitable stream habitat within the 
historic range. Both sites have been monitored for frogs 
for many years and are part of a study investigating 
environmental refuges from chytrid in the Wet Tropics 
(Puschendorf & Hoskin, unpub. data). 

The decision to conduct a translocation in this species 
took many years and was based on the following 
criteria for conducting a translocation (Hoskin & 
Puschendorf, unpublished): 

1. Only if the species is known (or very likely) to have 
been at the site in recent time.  

This increases the likelihood that the environment at 
the new site is suitable for the species, and decreases 
the likelihood that the translocated species will 

detrimentally impact other species at that site (i.e., it 
will co-occur there with species it has co-occurred with 
in recent time). 

2. Only if the species has been thoroughly surveyed for 
at this site and elsewhere across the historic range and 
adjacent areas.  

Thorough surveys to determine the existence of 
overlooked populations are crucial. It needs to be 
certain that the translocation attempt is really 
necessary and that the species is definitely absent from 
the translocation site (to avoid mixing populations). 

3. Only if threats are understood and there is a solid 
reason to believe the species will do well at the new 
site.  

Is the threat absent at the new site? For how long? Or if 
it is present, can you be sure the species will handle it 
there? 

4. Only if the source population can handle the 
removal of animals. 

Translocations are inherently risky with no guarantee 
that the translocated animals will survive or establish a 
viable population; therefore, it is important to be sure 
that removing them will not be a significant threat to 
the source population. If the source population is 
persisting well (which requires extended population 
monitoring), it may be acceptable to take up to 10%. 
This is highly dependent on many factors, such as 
breeding strategy, breeding success, population trends, 
etc. Population modeling could be incorporated to 
quantify the risk. 

5. If there are multiple populations, then the 
population genetics must be known to make an 
informed decision on which source population to use 
for translocation. 

If there are multiple populations, then they are likely to 
be genetically different and this needs to be 
investigated. Highly localised species (e.g., single 
mountain-top endemics or those with a single 
population) tend to be genetically homogenous due to 
their small population size and connectivity. In these 
cases, the options to maximise genetic diversity in the 
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translocated population include: (i) move as many 
individuals as is possible without impacting the viability 
of the source population, (ii) source individuals from 
different parts of the population, and (iii) maximise the 
number of individuals contributing to breeding (e.g., 
consider sex ratios and breeding systems).  

These criteria were fulfilled in terms of the Litoria lorica 
translocation (Hoskin & Puschendorf, unpublished): 

1. L. lorica was almost certainly present at the 
translocation site 25 years ago, pre chytrid disease 
outbreak in the Wet Tropics. 

2. The northern Wet Tropics region was thoroughly 
surveyed over several years and L. lorica was found 
to be absent from all likely habitat elsewhere, and 
years of monitoring other frogs at the translocation 
site had shown with high certainty that the species 
was absent there.  

3. Years of chytrid research in the region had shown 
that L. lorica and other stream frogs are persisting 
well despite chytrid infection at the source site 
(Puschendorf et al. 2011). With regards to this 
threat, the translocation site was deemed highly 
suitable due to environmental similarity to the 
source site and high abundance and persistence of 
the sister species L. nannotis there, despite chytrid 
infection 

4. The main population of L. lorica is common 
throughout the area of suitable habitat and this site 
is considered ‘at capacity’. The population size has 
been estimated, and monitoring shows no 
population decline over years. Less than 10% of 
adults were translocated. 

5. Only a single population existed pre-translocation. 
To maximise genetic diversity, individuals were 
moved from the middle of the source population, 
equal number of males and females were moved, 
and almost all females were gravid when moved.  

The translocated population of L. lorica is regularly 
monitored and it is too early to determine whether it 
has been successful. Measures of success will include: 
survival of the translocated adults, successful breeding 
and recruitment at the site over the next few years, 
and, longer-term, population growth at the site. 

Meeting all the above criteria will maximise the 
likelihood of success for the population being 
translocated, and minimise the impact on the recipient 
environment. However, it is very rare that all these 
considerations will be met. The above criteria require 
thorough research and could only be realistically 
satisfied in some species. One of the biggest issues in 
the above list is understanding the threat posed to a 
species and determining with some certainty how the 
translocated population will handle that threat at the 
new site. In the case of the frog example here, the 
threat is disease and this threat has been studied in 
detail at all the sites involved. Disease is not a simple 
threat to study, but other threats, such as climate 
change, are considerably harder to resolve.  

Another big issue in the above list is determining with a 
high degree of confidence what the impacts on the 
recipient environment will be. In the case of the 
reintroduction of a species to a site it was present at in 
recent history (as for Litoria lorica), such impacts can be 
assumed to be minimal. In the case of translocation of 
individuals beyond their known historic range, such 
impacts may be near impossible to determine and 
predict. Hence such translocations are highly 
contentious and have not been performed for native 
species in the Wet Tropics. 

Another big issue in the above list is determining how 
many individuals can be removed from a source 
population without impacting its long-term viability. 
This is obviously very complex and will be species and 
situation-specific. What is the size of the source 
population? Is it continuous or structured? Is it stable or 
declining? How rapidly will removed individuals be 
replaced? From where should individuals be taken? And 
when? Allied to these questions is consideration of the 
genetic composition of the source and founding 
populations. All these are complex questions that can 
only be answered through detailed study of the specific 
system in question. 

As stated at the outset, the above discussion is based 
on a case study of a single well-studied frog system. 
Considerations would be different for a different 
species of frog, let alone a threatened species of plant 
or invertebrate. And considerations would be very 
different when considering translocation as a 
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management tool for climate change threats. In 
particular, climate change threats have raised 
discussion of moving species outside of their known 
historic range. Our discussion above does not deal with 
this. Support for this would need to be thoroughly 
scrutinised. In particular, there is the obvious potential 
for impacts on recipient environment. Shifting a species 
outside its range introduces a novel species into an 
environment, with potentially significant impacts on 
other species that would be very hard to accurately 
predict. Beyond this fundamental issue, moving a 
species outside its known range into a novel 
environment intuitively reduces the likelihood of 
establishment success. Translocation outside of the 
known range is, for good reason, very contentious and 
widely considered ‘playing god’. It would require 
considerable debate that we do not enter into in detail 
here. 

Ultimately, any translocation should be seen as a low 
success, last resort management option that requires 
detailed system-specific data. 

Genetic translocation in the WTC 
Region 

The facilitation of gene flow between populations 
through assisted interbreeding can be used to enhance 
the evolutionary potential of populations. 

Species may adjust to a changing climate through 
evolutionary adaptation (Bradshaw and Holzapfel 
2006). However, evolutionary responses are dependent 
on the presence of appropriate adaptive variation; if a 
population is to rapidly adapt to a different climate, it 
requires adaptive variation (genes) suited to that 
climate. Whilst there can be adaptive variation in 
climate sensitivity within populations, theoretical and 
empirical studies suggest the bulk of a species’ adaptive 
variation is found across populations rather than within 
population (Hampe and Petit 2005). The facilitation of 
gene flow between populations through assisted 
interbreeding can, therefore, be used to enhance the 
evolutionary potential of populations of plants and 
animals. This emerging conservation tool is known as 
genetic translocation (Weeks et al. 2011). 

Isolated populations on the periphery of a species’ 
distribution may be adapted to the climatic conditions 
that will develop in core areas of the species’ 
distribution as climate change proceeds. 

Peripheral isolates — small, naturally isolated 
populations (as opposed to isolated through human-
mediated habitat fragmentation) on the periphery of a 
species’ distribution — are an important source of 
adaptive variation of climate-relevant traits. These 
populations are likely to be particularly diverse in terms 
of climate adaptation because: (1) their location at the 
periphery of the species’ distribution means they are 
likely to be exposed to extreme climatic conditions 
(relative to the species’ tolerance), and (2) their 
isolation decreases or prevents gene flow from 
neighbouring populations and allows for local 
adaptation to the conditions encountered in the isolate 
(Aitken et al. 2008). Peripheral isolates on the hot 
periphery of a species’ distribution may, therefore, be 
adapted to hot conditions, i.e., they may be adapted to 
the climatic conditions that will develop in core areas of 
the species’ distribution as climate change proceeds. 
Thus, hot-adapted peripheral isolates could hold the 
adaptive variation needed by core populations if core 
populations are to evolutionarily adapt to warmer 
conditions. As climate change proceeds, however, 
conditions will also become hotter in hot-adapted 
peripheral isolates at a much faster rate than in the 
past. Given the small size and isolation of these isolates, 
and given that they are already at the limit of the 
species’ thermal tolerance, hot-adapted peripheral 
isolates are particularly vulnerable to climate change. 
Thus, as temperatures become even hotter, hot-
adapted peripheral isolates may be some of the first 
populations to disappear. Thus, the application of 
genetic translocation in building resilience to climate 
change requires urgent attention. 

Facilitating gene flow between lineages and/or from 
peripheral isolates to core populations could bolster 
the evolutionary potential of populations in the WTC 
Region. 

Research in the WTC Region suggests genetic 
translocation could be used to improve climate change 
resilience of species from this region. The WTC Region 
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consists of a complex network of rainforest patches, 
with large central patches of rainforest that experience 
relatively cool to mild climate, as well as smaller 
peripheral rainforest isolates that are exposed to more 
extreme conditions. Populations of rainforest specialists 
that have been able to persist in the small isolated 
patches of rainforest are likely to be adapted to the 
conditions encountered in the isolates; they may hold 
adaptive variation in thermal and desiccation 
tolerances that is not present in core populations. 
Furthermore, many WTC Region endemics display a 
complex phylogeography (geographic distribution of 
genetic groups), consisting of multiple lineages that are 
isolated from one another. In some cases, these 
lineages are known to be divergent in their climate 
sensitivity (Moritz et al. 2012). Thus, facilitating gene 
flow between lineages or from peripheral isolates to 
core populations could bolster the evolutionary 
potential of populations in this region. Genetic 
translocation is, however, a controversial and relatively 
costly conservation strategy (Shoo et al. 2013). Even so, 
it is a strategy that is increasingly being considered 
(Weeks et al. 2011), and appears particularly well-
suited to the WTC Region given the structured 
phylogeography and local adaptation seen in species 
endemic to this region. Before genetic translocation can 
be safely and effectively used in this region, further 
research into its application is required. More 
specifically, genetic translocation protocols need to be 
developed to ensure that if/when this strategy is used 
it: (1) improves the resilience of recipient populations, 
and (2) threats associated with the transfer of 
organisms between habitat patches are minimised. 

Triggers and thresholds 

The uncertainty inherent in climate change predictions 
makes it almost impossible to determine set triggers 
or thresholds beyond which ecosystems are likely to 
change irrevocably. 

Management of complex ecosystems depends on being 
able to measure the responses of organisms to the 
main drivers of change (Bino et al. 2014). The most 
useful information for managers to understand and act 
upon often take the form of indicators, thresholds and 

triggers (Eiswerth and Haney 2001; Werners et al. 
2013). Threshold responses can be measured and 
quantified, identifying potential transitions between 
ecosystems states, with the inclusion of uncertainty in 
the form of the time range in which tipping points are 
likely to be reached (Werners et al. 2013). 
Understanding minimum thresholds transitioning from 
desired to undesired states can help manage the 
system for resilience (Groffman et al. 2006). However, 
thresholds can rarely be generalised across large spatial 
and temporal scales (de Boer 2007). Additionally, the 
uncertainty inherent in climate change predictions 
makes it almost impossible to determine set triggers or 
thresholds beyond which ecosystems are likely to 
change irrevocably. In the coral reef literature, for 
instance, there is much discussion of “phase shifts” 
from a desirable stable state (coral-dominated) to a less 
desirable stable state (e.g. algae-dominated), with very 
little prospect of a reversal (Graham et al. 2013). But 
even in this case, it has not been possible to define set 
thresholds in environmental parameters (e.g. 
temperature, nutrients, turbidity, herbivore biomass) 
that will trigger a phase shift, or even how long it takes 
a system, once the threshold has been crossed, to reach 
a new stable state (Graham et al. 2013). For instance, 
the bleaching threshold for Great Barrier Reef corals 
varies between species and across spatial scales, and is 
dependent on a complex set of variables including both 
the duration and magnitude of thermal stress (Spillman 
et al. 2013). 

In the context of assessing the suitability of refugia for 
supporting future changes in species ranges and 
community structure, understanding thresholds is 
equally difficult. Managing the whole landscape, rather 
than refugia on their own, may provide a better 
safeguard where refugia do not perform as predicted 
under climate change. Understanding the resilience of 
refugia will depend on our ability to ascertain what the 
limits are of that resilience. For instance, there may be 
rainfall levels below which a refugium is no longer able 
to sustain species that migrate into it (Keppel and 
Wardell-Johnson 2012). Predicting the value of refugia 
based on thresholds is especially complicated in the 
case of species that are nomadic (Bino et al. 2014). 
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Previous studies that have identified environmental 
thresholds have highlighted that these are often 
specific to a particular location or time. 

Bino et al. (2014) modelled fluctuations in 10 species of 
colonial waterbird species in the Macquarie Marshes of 
NSW over 24 years (1986-2010), and found that all 
species had different thresholds in water flows that 
triggered breeding events. Waterbird species included 
great egret (Ardea alba), intermediate egret (A. 
intermedia), little egret (Egretta garzetta), cattle egret 
(Bubulcus rufous), night heron (Nycticorax caledonicus), 
glossy ibis (Plegadis falcinellus), Australian white ibis 
(Threskiornis mollucca), straw-necked ibis (T. 
spinicollis), little pied cormorant (Microcarbo 
melanoleucos), and little black cormorant 
(Phalacrocorax sulcirostris). All these species also occur 
in some parts of the WTC Region, but may respond to 
different water flow thresholds in different parts of 
their range. Hilbert et al. (2014) used the known 
successful incubation temperature of turtles (25-34°C) 
to predict that nesting beaches in the northern Great 
Barrier Reef and Torres Strait region will produce a 
higher proportion of females by 2030 and will 
experience incubation temperature that constantly 
exceed the upper thermal incubating threshold by 
2100. 

Among the 10 Australian ecosystems considered most 
vulnerable to tipping points, seven occur in the WTC 
Region. 

Among the 10 Australian ecosystems considered most 
vulnerable to tipping points, seven occur in the WTC 
Region (Table 2.3): elevationally restricted mountain 
ecosystems, tropical savannas, coastal floodplains and 
wetlands, coral reefs, drier rainforests, offshore islands, 
and salt marshes and mangroves (Laurance et al. 2011). 
Whilst specific tipping points are not identified or 
predicted, the authors recommend a number of actions 
to prevent tipping points. To determine whether a 
tipping point may be approaching, key ecological 
processes and ecosystem dynamics must be identified 
and examined. Disruptions to ecological processes and 
slowing of ecosystem dynamics may both point to 
impending shifts, as can increases in spatial variance 
and autocorrelation measured by remote sensing 
(Laurance et al. 2011). The authors also advocate for 
local management actions to reduce the risk of tipping 
points, such as increasing the protected area networks, 
limiting external disturbances such as habitat 
destruction for urban and road development, creating 
corridors and buffers, restoring habitat and managing 
fire regimes (Laurance et al. 2011). 
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Table 2.3 Intrinsic features and environmental threats that render the 10 most vulnerable Australian ecosystems prone to tipping 
points. For each ecosystem type, the most important feature is numbered 1 with those of lesser importance numbered 
subsequently. 

 Mountains Tropical 
savannas 

Coastal 
wetlands 

Coral 
reefs 

Drier 
rainforests 

Islands Estuarine 
wetlands 

Narrow environmental envelope 1  4 1 1 2 1 

Near threshold 3   3    

Geographically restricted 2  1  2 1 2 

History of fragmentation   2  3  4 

Reliance on ecosystem engineers  3      

Reliance on framework species    2   6 

Reliance on predators or keystone 
mutualists 

       

Positive feedback  1  4 4   

Proximity to humans   3 5 5  3 

Social vulnerability  2     5 

Increased temperatures 1   1 2 6  

Changes in water balance and 
hydrology 

2  3  3  3 

Extreme weather events 3 3 2 2  2 1 

Ocean acidification    3    

Sea-level rise   1   3 2 

Changed fire regimes 8 2 8  1   

Habitat reduction 5  5 5 5 4 4 

Habitat fragmentation 6 4 6 6 6 5  

Invasives 4 1 4  4 1  

Pests and pathogens 7     7  

Salinisation    4    

Pollution   7    5 

Overexploitation  5  7 7   

Source: Laurance et al. (2011) 
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Fire management 

Fire offers a number of opportunities for adaptation 
management, including prescribed burning of weedy 
flammable species and woody species encroaching on 
native grasslands. However, timing of burns will be 
critical to success in terms of biodiversity 
management. 

In general, fire offers more opportunities for adaptation 
management and intervention than other aspects of 
climate change (Low 2011). Prescribed burning at key 
times to manage fuel accumulation, particularly of 
invasive flammable grasses including gamba grass 
(Andropogan gayanus) and buffel grass (Cenchrus 
ciliaris), will become an important management 
strategy under climate change in order to decrease the 
potential for extensive wildfire and protect habitat for 
wildlife. However, climate change is expected to shift 
fire season length in the region, and shorten the time 
suitable for prescribed burns. There may also be 
complex effects on fuel loads - on the one hand, 
elevated CO2 may enhance vegetation production and 
increase fuel loads, but on the other, drought may 
decrease long-term vegetation production (thereby 
decreasing fuel loads) and may decrease fuel moisture 
(thereby increasing potential rates of spread) (Williams 
et al. 2009).  

Prescribed burns may also be critical in controlling the 
spread of woody plants into grasslands in the region 
(Witt et al. 2009). Woody thickening is a considerable 
problem in the region and has been observed most 
consistently in northern Australia. However, there is the 
potential for perverse outcomes associated with altered 
burning regimes which focus on reducing emissions, for 
example, in Far North Queensland, invasion of 
grasslands by paperbark is related to repeated early dry 
season burns and subsequent overgrazing (Witt et al. 
2009). This highlights the current lack of integrated fire 
management regimes in the region. 

For some terrestrial species, an increase in woody 
vegetation may provide more habitat, but other species 
rely on an open habitat and shade intolerant plants and 
native grasses could be threatened or outcompeted by 
encroaching shrubs and trees. Some species are directly 

threatened by woody thickening - the endangered 
golden shouldered parrot, endemic to Cape York 
Peninsula, is impacted through increased predation risk 
and impacts of thickening on seasonal food availability 
(Crowley et al. 2004). Prescribed burning is considered 
the best method to stall thickening, although the timing 
of the burn is vitally important - in the north, late dry 
season burns and storm-season burning favour the 
maintenance of grassland, while burns at other times 
favour the encroaching tree-line.  

Fire management strategies will need to be adapted 
for different habitats and woodland types, and take 
into account faunal species within communities and 
previous seasons for fire management.  

While there is great potential to use fire as an 
adaptation tool to manage some of the impacts of 
climate change on biodiversity, caution should be taken 
and the capability of different species and ecosystems 
to withstand fire must be considered in different 
regions. For example, while some plant species are well 
adapted to fire, others can be vulnerable to frequent 
fire events. Surveys following repeat fires suggest that 
most rainforest plants can survive high fire frequency 
and vegetatively resprout following fire (Williams et al. 
2006b). However, some rainforest and sclerophyll 
plants are killed by high frequency fire, such as the rare, 
restricted shrub Banksia plagiocarpa (Williams et al. 
2005b). Furthermore, burns too early in the season may 
not maintain an open structure, while very hot fires 
may kill seeds outright, especially of fire-sensitive 
species. For other species, fire could stimulate 
germination rates, though this can be detrimental when 
the interval between fires is too short and the 
regenerated plants are burnt before they fruit and 
restore the soil seed bank. Timing of burn has also been 
shown to influence native fauna, with wet season and 
dry season burns in the tropics favouring different 
assemblages in the time following the burn (Valentine 
et al. 2007). 

In summary, the impacts of climate change on fire 
regimes in the WTC Region are complex and so 
developing adaptation management strategies to 
reduce risk to biodiversity and maintain ecological 
integrity will be challenging. Management decisions 
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should reflect the fact that fire regimes will be 
influenced by other factors, such as exotic species and 
land-use change, which may affect fuel loads. 
Appropriate management actions for biodiversity will 
differ among regions, but may include regimes that aim 
specifically to manage fuel accumulation and flammable 
invasive grasses, such as prescribed burning, or planting 
fire retardant vegetation. The life history and other 
attributes of focal species should be taken into account, 
and diverse fire regimes should be applied to encourage 
habitat and species diversity.  

Connectivity for movement 
and migration 

Coastal and marine communities 

Climate change is driving a southward migration of 
tropical marine communities (Beger et al. 2014) and, 
where undeveloped space is available, a landward 
migration of coastal communities such as mangroves 
and dunes (Saintilan et al. 2014). Some communities 
may replace others; for instance, mangroves have been 
replacing salt marshes, especially at their poleward 
limits (Saintilan et al. 2014). Traditionally, marine 
conservation planning has addressed climate change or 
connectivity, but not both (Magris et al. 2014). 

Adaptation efforts will need to be geared towards 
maintaining connectivity for assemblages to expand 
into new areas; impact minimisation or mitigation will 
need to target not just existing communities, but areas 
to the south (for tropical marine communities) and 
west (coastal communities).  

Mangroves, with their pioneer-species characteristics, 
have the ability to rapidly colonise new areas as these 

areas become suitable (Alongi 2008; Soares 2009); 
barriers to this movement will be the dense and rising 
coastal development taking place along the WTC Region 
coastline (Eslami-Andargoli et al. 2013). Similarly, 
coastal wetlands can adapt by maintaining their 
elevation relative to sea level, given the opportunity for 
the maintenance of sediment deposition rates and, 
where possible, active management of water flows 
(Rogers et al. 2014; Saintilan and Rogers 2013). Helping 
these coastal ecosystems to persist (and therefore 
migrate) will require the availability of space into which 
they can migrate (Gilman et al. 2008; Soares 2009) - 
recently termed “managed retreat” (Saintilan and 
Rogers 2013) - and adequate migration corridors 
(Williams et al. 2005a). This will require integration 
between climate change adaptation management and 
urban planning, and may result in “more compact 
urban forms that may lead to reductions in the cost of 
defence against sea level rise, reduce energy usage per 
person and provide more green space” (Burley et al. 
2012).  

Modelling can predict where, when and how severe 
coastal erosion and sea level rise might be (Nicholls and 
Tol 2006). Rehabilitation of coastal communities in 
areas that have become eroded due to sea level rise 
and increasingly intense tidal and storm surges is 
becoming more urgent, but can be expensive, and is 
not always a priority. Bell and Lovelock (2013) propose 
a scheme in which the coastal protection function 
provided by mangroves could be insured, and provide 
recommendations to policy-makers and the insurance 
industry. Given the similar function performed by most 
types of coastal vegetation, this concept could easily be 
extended to maintain or rehabilitate all coastal 
community types. Whilst “hard” adaptation options 
were most common in the past, “soft” options are 
increasingly considered (Hallegatte 2009) (Table 2.4).
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Table 2.4 Hard and soft adaptation options highlighted by Burley et al. (2012), modified with information from Gilman et al. 
(2008) 

 HARD SOFT 

A
n

ti
ci

p
at

o
ry

 

Planning stage 

High resolution mapping of lands and the distribution of 
land use 

Have risk-appropriate insurance policies 

Select locations for wetland migration inland to increase 
the probability of maintaining wetlands of sufficient size 
and diversity to achieve the objectives (maintenance of 
ecosystem services and biodiversity) 

Have planning regulations to restrict the use of land in 
high-risk area for infrastructure, encouraging alternative 
uses (wetlands) 

Increase the density of the urban footprint (increase room 
for wetlands and decreasing costs associated with 
defence) 

Have an institutionalised long-term planning horizon to 
anticipate responses & awareness of climate change 
effects on wetland distribution 

 Planning regulations specifying optimal land use and 
greenhouse gas capture, that is, the amount of wetlands 
to be maintained, the amount of catchment sediment and 
nutrient loads 

 Develop regional and town plans that take into account a 
changing climate 

Design and construction stage 

Design landscapes to accommodate landward wetland 
migration 

Financial incentives for the development of ‘soft’ 
engineering options for coastal protection 

Limit defence against sea level rise to high value 
infrastructure. 

Financial incentives for retreat from high-risk property in 
order to increase size and connectivity of wetlands 

Redesign roads and other structures to accommodate 
wetland connectivity 

Incentive payments for increased carbon sequestration 

Use ‘soft’ engineering approaches to sea level rise (beach or wetland nourishment) 

Change land-use patterns in new developments to accommodate coastal wetlands at appropriate elevations relative to 
sea level (Andrey and Mills 2004) 

Manage rate and location of groundwater extraction  

Operating and maintenance stage 

Weed and feral animal control Financial incentives for better maintenance and operating 
practices 

Monitoring and management Establish legal limits for tolerance of weeds, ferals, 
mosquito 

Improve access for the community (tracks, boardwalks, 
bird-hides, fishing) 

Market-based incentives (increased housing prices with 
access to green space) 
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 HARD SOFT 

R
e

ac
ti

ve
 

Maintenance and operating stage 

Nourish wetlands, mangroves and saltmarshes with 
sediment to allow wetland accretion to keep pace with 
sea level rise 

Increase protection of vulnerable and endangered species 
(e.g. strengthen fisheries penalties, enforce protected area 
compliance). Eliminate non-climate stresses to augment 
overall ecosystem health 

Create artificial environments for the maintenance of 
species populations (e.g. production of juveniles, 
sturgeon) 

Increase regulation of pollution (increase standards) 

Increase waste water treatment capacity Emergency management plans, evacuation and climate 
advisories to reduce risk during storms 

Build walls, groynes, revetments, bulkheads for protection 
from storm surges and erosion 

Incentives for mitigation projects 

Rehabilitation, reafforestation Creation of information databases regarding climate 
impacts & effectiveness of adaptation strategies—learning 
by doing approach 

Production of flooding intensity maps for flooding relief Monitoring programs and education of the public 

 

Terrestrial biodiversity and landscape 
connectivity 

Increasing landscape connectivity is important for 
addressing conservation issues resulting from habitat 
fragmentation, and also for enabling shifts in species’ 
distributions in response to climate change. 

Large areas of good quality habitat are the cornerstone 
of biological conservation and will be critical to the 
ability of species to adapt to consequences of climate 
change (Hodgson et al. 2011; Hodgson et al. 2009; 
Travis 2003). However, climate change will alter the 
distribution and extent of suitable climate space for 
Australian terrestrial animals (Reside et al. 2013) and 
plants (Hilbert and Fletcher 2012). Thus, connectivity 
between areas that lose and those that gain suitable 
climate space will be necessary to facilitate species’ 
biogeographical range shifts. In the WTC Region for 
example, easterly shifts in suitable climate space into 
the Mackay-Whitsunday-Isaac and Wet Tropics areas 
are predicted for a large number of species from 
western parts of the region (Reside et al. 2013). 

Connectivity is a landscape property that emerges from 
the interaction between attributes of the landscape and 
of plant and animal species. Connectivity relates to the 
amount, quality and spatial arrangement of habitat in a 
landscape and how this either enables or presents 
barriers to the movement of plants and animals. There 
has been a shift in emphasis from physical connectivity 
(i.e., structural features that are perceived by humans 
as being connected) to functional connectivity (i.e., 
whether or not a given species can actually move 
through a given landscape), where even habitats that 
appear to be physically unconnected may be 
functionally connected or conversely where habitats 
that appear to be physically connected may be 
functionally unconnected. 

Habitat clearing and fragmentation have created 
barriers to movement for most taxa, and biodiversity 
conservation strategies typically include increased 
landscape connectivity as an important objective. 
Adaptation of terrestrial biodiversity to climate change 
will also require strategies that surmount barriers to 
movement, although the spatial scales involved are 
likely to be large and the time frame short.  
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Increasing connectivity has an important limitation as a 
strategy for adaptation to climate change in that 
suitable climate space is projected to disappear from 
the region for a range of species, such as endemic 
upland taxa in the Wet Tropics bioregion (Williams et al. 
2003) and species dependent on coastal freshwater 
aquifers. Increasing landscape connectivity will 
contribute neither to the ability of these species to 
persist nor their adaptive capacity under climate 
change. While translocation to geographically distant 
areas with suitable climate space could potentially 
avoid species’ extinction, it would likely only ever be an 
option for a small subset of species, would not preserve 
ecosystems, and may have negative impacts in recipient 
systems.  

The amount of good quality habitat in a landscape is 
positively related to degree of connectivity. Linear 
features may also be important, especially at smaller 
spatial scales. 

The degree of connectivity of a landscape is closely 
related to the amount and distribution of good quality 
habitat available (Hodgson et al. 2011; Hodgson et al. 
2009). Simply increasing the amount of habitat in a 
landscape can increase connectivity for some species. 
For example, Doerr et al. (2013) modelled a range of 
plausible future landscapes for parts of northern New 
South Wales and determined that, in respect to 
connectivity, “Even random placement of new areas of 
native vegetation achieved similar outcomes for 
biodiversity on average as principles based on careful 
spatial planning”. However, the importance of spatial 
arrangement of habitat increases dramatically as the 
level of landscape habitat cover decreases, so that 
where habitat cover falls below 30%, the spatial 
arrangement of any additional habitat has a strong 
effect on its contribution to connectivity. In a well-
vegetated landscape, any addition of habitat is more 
likely to be near to (and functionally connected with) 
other habitat areas. 

While strategies for improving connectivity now include 
generally increasing levels of good quality habitat cover 
in the landscape, continuous linear features may be 
important for increasing connectivity for some 
organisms, especially those that cannot traverse 

cleared and modified land. Continuous strips of 
vegetation are most typically located along 
watercourses, and these areas are commonly targeted 
for protection and restoration as movement corridors. 
Riparian areas are thought to be used for navigation 
through the landscape by mobile species such as flying 
foxes, are known to support high numbers of species 
and to provide critical habitat for a range of flora and 
fauna, especially in lower rainfall regions. Riparian areas 
also provide refuge during hot days, which are 
predicted to become more frequent throughout the 
Wet Tropics cluster. Furthermore, protection and 
restoration of riparian areas have potential co-benefits 
for the conservation of aquatic systems and water 
quality improvement. Importantly, fringing riparian 
vegetation can often be maintained or restored without 
the loss of substantial areas of productive land and so 
represents a relatively palatable option for land 
managers. However, because adjacent floodplain areas 
are highly productive, riparian vegetation is typically 
narrow, surrounded by cultivation or grazing. While 
riparian strips provide habitat for a large range of 
animals and plants, it has been suggested that corridors 
that are at least 300-500 m wide are needed to 
promote connectivity at regional scales (DECC NSW 
2007). This would likely require legislative support given 
current patterns of land use. Importantly, riparian 
corridor networks will not improve connectivity for 
flora and fauna that are associated with non-riparian 
ecosystems, nor will they facilitate movement between 
riparian and non-riparian habitats. In order to 
understand the trade-offs of focussing conservation 
actions in riparian areas it would be useful to identify 
the species associated with riparian and non-riparian 
habitats, accounting for seasonal movements, together 
with their ability to move through cleared and modified 
landscapes.  

The contribution of linear connectivity features to 
surmounting barriers to movement is easier to conceive 
at smaller spatial scales. For example, movement of 
rainforest arboreal mammals is deterred by breaks in 
forest canopies caused by transport, energy and water 
supply infrastructure (Goosem 2004). Rope bridges can 
transcend this barrier effect across small (ca. 15 m) 
gaps, although the effectiveness of these structures 
across larger gaps is uncertain (Goosem 2004). Road 
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underpasses can improve connectivity, especially where 
they incorporate surrounding habitat restoration and 
elements of habitat structure (e.g., logs, rocks) 
(Goosem 2004). Other actions that improve 
connectivity across transport infrastructure include the 
use of roadside reflectors (e.g., successful in reducing 
roadkill in Proserpine rock wallaby Petrogale 
persephone; Johnson et al. 1993), elevated bridges that 
maintain canopy continuity, and swinging powerlines 
well above intact canopies. Although many of these 
measures can be expensive, improving functional 
connectivity across transport infrastructure is likely to 
strongly influence the adaptive potential of many 
species.  

Many current projects are based on increasing 
connectivity at different spatial scales 

Species’ adaptation to climatic changes will in some 
cases require very large-scale distributional shifts along 
broad ecological gradients. This has prompted 
continental-scale connectivity initiatives such as the 
Great Eastern Ranges (‘Alps to Atherton’) project which 
aims to improve connectivity among habitats along the 
Great Dividing Range between southern Victoria and 
the Atherton Tablelands (Mackey et al. 2010). 
Challenges include identifying critical barriers to 
movement from present to predicted areas of suitable 
habitat, as well as facilitating such large geographical 
shifts over short time scales.  

In the Terrain NRM region, the Wet Tropics 
Management Authority (WTMA) has implemented a 
”Making connections” project centred around high 
elevation rainforest areas of Atherton Tablelands, 
which are considered to be areas of potential refuge 
from climate change for cool upland endemic species, 
many of which have limited ability to move across 
cleared areas. The WTMA is in the process of updating 
their Connectivity Strategy, prioritising areas on the 
basis of protecting conservation values of the Wet 
Tropics World Heritage Area (WHA) specifically. Other 
areas of the landscape will be important for 
connectivity in current and future climates and across 
NRM regional boundaries.  

Cleared and modified parts of the landscape may 
contribute to functional connectivity. 

The functional connectivity or “permeability” of 
landscapes differs among species due to variation in 
dispersal and life history characteristics. A barrier to 
one organism may enhance connectivity for another 
(Manning et al. 2010). 

It is understood that cleared and modified parts of the 
landscape (which would not necessarily be considered 
as habitat) may contribute to functional connectivity. 
For example, regrowth, including areas dominated by 
introduced weed species (e.g. Cinnamomum camphora 
camphor laurel) potentially contributes to functional 
connectivity for both animals and plants (i.e., 
regeneration opportunities) (Kanowski et al. 2003).  

Urban and agricultural development can be major 
obstacles to landscape connectivity for many 
organisms. In the WTC region, urbanisation is 
concentrated in lowland coastal areas, especially in the 
Terrain and Reef Catchments NRM regions. Adaptation 
to climate change by certain plants and animals in 
coastal areas will be prevented by a lack of functional 
connectivity to westward areas (refer to previous 
section. This is likely to be especially significant for 
coastline species that will increasingly experience 
impacts of sea level rise and seawater inundation in the 
short term. Suggestions for improving connectivity in 
urbanised areas are typically based around parkland, 
open areas and street trees (e.g. Manning et al. 2010), 
although other strategies are being tested, such as 
‘green rooftops’ (Braaker et al. in press). 

One of the risks of increasing connectivity is assisting 
dispersal of problem species or disease. 

One of the risks of increasing connectivity for target 
species is that it may inadvertently increase 
connectivity for problem taxa, fire and disease (see also 
Invasives section). For example, Doerr et al. (2013) 
report an increase in the spread of an introduced 
species (peppercorn Schinus molle) in model landscapes 
that included planting intended to improve 
connectivity. However, it is generally considered that 
the benefits of increasing connectivity outweigh the 
risks, especially in the context of climate change. 
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Connectivity can be improved by integrated farm 
management that includes protection of remnant 
habitat isolated trees and areas of regrowth, 
managing dams and modifying fence design. 

There is a multitude of examples of integrated farm 
management actions that increase the connectivity of 
farmed landscapes for native plants and animals. 
Increasing habitat area is a primary strategy, achieved 
by protecting patches of remnant habitat, isolated 
trees, dams and areas of regrowth vegetation. 
Removing or reducing barriers to the movement of 
organisms across properties may also improve 
connectivity. This may include actions such as reducing 
the height of fences to allow passage by animals such as 
kangaroos, and replacing barbed wire with plain to 
avoid snagging bats and gliders.  

Restoration, including biodiverse carbon plantings, 
may be able to increase connectivity in the landscape. 

It is critical that restoration plantings do not replace 
existing habitat because plantings are likely to take 
many decades to attain habitat values similar to that of 
mature systems. Plantations per se will not necessarily 
increase habitat relative to pasture or agricultural land, 
especially if they comprise few species or low structural 
diversity. In contrast, biodiverse plantings have the 
potential to increase the amount of habitat available, 
even to species with fairly specialised habitat affiliations 
(Kanowski et al. 2005; Kanowski et al. 2003), and thus 
ahs the potential to increase overall landscape 
connectivity for these organisms (See restoration 
section).  

Invasive species 
The WTC Region is likely to remain suitable for many 
weeds and some, such as rubber vine, are predicted to 
increase under climate change (Hilbert et al. 2014). 
Climate change will also create new opportunities for 
invasive species to recruit, spread and increase in 
abundance, particularly following disturbance from 
extreme events such as cyclones and extreme rainfall 
(Hilbert et al. 2014). Invasive grasses, including gamba 
grass and mission grass in the monsoonal zone, and 
buffel grass (Pennisetum ciliare) in sub-humid areas are 

also likely to increase fuel load and foster larger, hotter 
fires (Fensham 2012; Hilbert et al. 2014).  

Existing invasive species threats should be controlled 
in order to increase the capacity of native biodiversity 
to adapt to climate change, and adaptation responses 
to climate change should not create new, or 
exacerbate existing, invasive species problems. 

Developing suitable adaptation actions to control 
invasive species under a changing climate will require 
planning at the species, local and regional levels. For 
example, weed control and habitat restoration should 
be ongoing actions in priority areas of the WTC Region, 
including areas identified as climate refugia for native 
biodiversity. This is because these areas are also likely 
to be exploited by invasive species (Low 2011), and 
could potentially allow pest species to persist then 
disperse when conditions improve. Efforts to create 
conservation corridors to help native species adapt to 
climate change may similarly promote the spread and 
dispersal of invasives unless they are effectively 
managed in these locations (Hellmann et al. 2008) (see 
also Refugia and Connectivity sections).  

The Invasive Species Council (2011) advises that 
research and control efforts should be directed toward 
species predicted to exert the highest threats to 
biodiversity under climate change, such as 
Phytophthora cinnamomi and the flammable invasive 
pasture grasses. In general, invasive species 
management under predicted climate scenarios will 
require a more adaptive and strategic response, and 
will need to be supported by flexible investment 
strategies which enable timely responses at critical 
periods – for example following extreme events 
(Reardon-Smith et al. 2012). Tightening of quarantine 
and biosecurity measures, and education of landowners 
about introduced species and their impacts should also 
continue to be priority adaptation measures. Managers 
and land-owners should be urged to make use of weed 
risk-assessment tools freely available, such as 
http://weedfutures.net, which is a decision support tool 
enabling land managers to make informed decisions 
about the management of naturalised, but not yet 
invasive plants at a regional level (Hughes et al. 2013).  

http://weedfutures.net/
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Reardon-Smith et al. (2012) outline a number of 
priorities to consider when considering climate change 
adaptation measures for invasive species, including: 

 Early Intervention – under rapidly changing 
conditions, control efforts for invasive species are 
most likely to be successful when implemented at 
an early stage in the invasion process (Park 2004). 

 Utilise predictive modelling tools, such as Bayesian 
Belief Systems – under uncertain outcomes, models 
can be used to ‘test’ the outcomes of alternative 
management approaches prior to their 
implementation (Liedloff and Smith 2010), thereby 
facilitating cost-effective on-ground invasive species 
management. 

 Seasonal climate forecasting – climate forecasting 
models which can incorporate both invasion and 
climate change biology with seasonal ENSO 
forecasts could allow the prediction of outcomes of 
different management actions, and provide an 
analysis of the level of risk (or uncertainty) 
associated with these in different years/seasons. 
This could provide the capability to adapt invasive 
species management to changing environmental 
conditions (Hellmann et al. 2008).  

 

Managing reproductive 
capacity in vegetation 
communities 

Adaptation management actions will require a holistic 
approach, with the most cost-effective actions 
occurring for species in-situ. Ex-situ actions, for the 
most threatened species, may include seedbanking, 
genetic supplementation or assisted 
colonisation/dispersal.  

The impacts of climate change on the reproductive 
success of most WTC Region plants is not well known, 
but growing season, flowering, germination and 
seeding success are likely to be affected (Low 2011). 
Obligate seeders, such as the restricted Banksia 

plagiocarpa from the Cardwell area will likely be 
particularly at risk (Williams et al. 2005).  

Like other groups of species, adaptation management 
to maintain reproductive integrity in plant communities 
will require a holistic and fluid approach. The most cost 
effective actions will be in-situ, although ex-situ actions 
may be required for the most threatened species (Table 
2.5). 

Table 2.5 Potential adaptation management strategies for 
plant reproduction 

 POTENTIAL ADAPTATION ACTIONS 

Immediate 
Actions 

 Control and eradication of introduced 

weed and grazing species 

 Halt to land disturbance and loss, 

maintaining canopy cover and 

favourable microclimates 

 Managing risks of adverse fire regimes 

 Land management and purchase 

 Water management 

 Baseline species and community studies 

of ecology and adaptive capacity  

 Risk-assessments of potentially at-risk 

species 

Ongoing 
Actions 

 Seedbanking 

 Assisted genetic flow in isolated 

populations 

 Assisted migration/dispersal 

 Species management 

Future 
Actions 

Assisted migration/dispersal 

The risks and benefits of adaptations should be taken 
into account, particularly with actions such as assisted 
gene flow. Seed-based risk assessment could be an 
option for some species from the WTC Region. 

Actions such as seedbanking, assisted migration and 
assisted genetic flow should, on the whole, be less 
expensive than comparable actions in faunal groups. 
Risks and benefits should be assessed, for example 
using the risk-assessment framework provided in 
Weeks et al. (2011). Aitken & Whitlock (2013) further 
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stress that in order to weigh the risks of assisted genetic 
flow against those associated with maladaptation from 
climate change, it is imperative to know the species' 
extent of local adaptation to climate and other 
environmental factors, as well as pattern of gene flow. 
Thus baseline surveys and research into the ecology 
and genetics of key species will be priority ongoing 
actions. Cochrane et al. (2011) developed a seed-based 
risk assessment approach for Western Australian 
species under climate change, which could be adapted 
as a management tool to assess potentially at risk 
species in the region. They used a two-way 
temperature gradient plate to profile the germination 
of more than 45 species across fluctuating and constant 
temperatures ranging from 5°C to 40°C. Species which 
germinated within a narrow temperature niche were 
predicted to be susceptible to climate warming. 

Fire could be used as a management tool to promote 
seed germination in species adapted to a fire-prone 
landscape and with a ‘sprouting’ life-history strategy, 
but timing and frequency of burning should be 
considered on a case-by-case basis. 

Fire could potentially be used as a management tool to 
promote seed germination in some species and 
communities adapted to fire, which employ a 
‘sprouting’ strategy following fire. However fire 
intervals are critical – in a study in the eucalypt forests 
between Townsville and Cardwell fire was found to 
promote seed germination and species richness, but 
intervals of more than eight years were required to 
allow for the maturation of shrubs (Williams et al. 
2006b). However, there is the risk that longer fire 
intervals may lead to woody thickening in some areas – 
fire interval should be considered on a case-by-case 
basis. 

Finally, when plant reproduction shifts in season, or 
failures occur, there are associated risks to nectivorous, 
frugivorous and granivorous fauna, and potentially a 
feedback effect on seed dispersal (Van der Putten et al. 
2010). Management actions could include ensuring a 
diversity of species to ensure different flowering times 
and pollen supply, and landscape connectivity to ensure 
access to flowering or fruiting plants (Murphy et al. 
2012). More specific targeted interventions to restore 

disrupted species interactions, including plant-
pollinator or plant-herbivore relations, may also be 
required (Dawson et al. 2011). 

Adaptation for important 
species and communities 
Whilst broader climate change impacts need to be 
managed at national and global scales, it is widely 
recognised that assisting species and ecosystem in their 
adaptation to a changing climate needs to include 
strategies to enhance their persistence at local and 
regional scales. Therefore, management of local 
stressors is seen as equally valuable, especially because 
the results of such actions tend to be much more 
readily measurable, and tend to yield results over 
shorter timeframes (Ghedini et al. 2013). Priority 
species and communities for the WTC region include 
marine turtles, dugongs and coral reefs. This region also 
has the highest diversity of birds and flying foxes in 
Australia, so these are also covered in some detail.  

Turtles 

Adaptation options for marine turtles are mainly 
consistent with a reduction in other more immediate 
impacts. 

Marine turtles are expected to be affected by different 
aspects of climate change depending on the stage in 
their life cycle. Nesting beaches are affected by rising 
sea levels and resulting erosion, and changes in 
temperature. Coastal feeding grounds such as seagrass 
beds and coral reefs are affected by rising SSTs and 
changing run-off and turbidity patterns from the land 
(larger and more frequent floods, storm events). 
Migration pathways may also be affected by changes in 
ocean temperature and circulation. While these 
changes are difficult to control, adaptation can be 
encouraged by reducing other, more immediate 
anthropogenic impacts: destruction of nesting habitat 
and predation of nests, disorientation of hatchlings by 
artificial lighting, degradation of nearshore marine 
habitats (especially seagrass beds and coral reefs), 
declining water quality, boat strike, incidental catch by 
commercial fisheries and traditional harvesting.  
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Protecting nesting beaches is the most cost-effective 
strategy of increasing turtle populations. 

Protecting nesting beaches is the most cost-effective 
method of achieving increases in leatherback 
populations (Gjertsen et al. 2014); this is likely to be the 
case for other turtle species. Protection of turtles at the 
nesting stage can include banning beach access to 
vehicles, general beach closure, the enclosing or direct 
protection of nests (e.g. with mesh), controlling turtle 
egg predators (Whytlaw et al. 2013), or even surface 
treatment with habanero pepper powder to deter 
predators (Lamarre-DeJesus and Griffin 2013). Where 
beaches are being eroded by sea-level rise or changes 
in sand deposition patterns from coastal development, 
other adaptation options may be necessary, such as 
hard engineering structures or soft measures (see 
below; Fuentes et al. 2010b). Identifying nesting 
beaches that will either remain or become suitable for 
turtles in the future will determine where nesting site 
conservation efforts could be directed in the coming 
years. Such assessments and predictions could include 
temperature shifts (as hatchling production may decline 
for turtle nests in lower latitudes with rising 
temperatures (Pike 2014; Read et al. 2012)) and 
exposure to changing weather patterns and storm 
activity. The Relative Exposure Index, which 
characterises nesting beaches based on the degree of 
exposure to wind and waves, may be a useful tool in 
determining which beaches, beyond the ones already 
commonly used by nesting turtles, would provide 
suitable nesting sites. A recent analysis showed that 
turtles tend to nest on high exposure beaches along the 
mainland Queensland coast (Garcon et al. 2010). Some 
models predict that current turtle nesting beaches 
along the Queensland coast will be less affected by 
cyclones, possibly due to past natural selection pressure 
to nest on beaches less likely to suffer cyclonic 
conditions (Fuentes and Abbs 2010). Assessments of 
future range shifts in nesting beaches should take into 
account predictions of changes in cyclone activity 
(Fuentes et al. 2011); the restructuring of beaches 
during cyclones may be beneficial to hatching success 
on beaches with high nest density by removing 
accumulated nesting debris (Dewald and Pike 2014; 
Honarvar et al. 2011).  

A number of options exist to safeguard the most 
important nesting beaches from beach loss and 
inundation, effectively providing a buffer zone. 
Adaptation options will need to be tailored to 
individual beaches and the particular threats they 
face. 

A number of options exist to safeguard the most 
important nesting beaches from beach loss and 
inundation, including the construction of sea walls or 
groynes, beach nourishment, dune building, nest 
shading or setback regulations that prohibit 
construction within a set distance from the beach, 
effectively providing a buffer zone (Fish et al. 2008; 
Nicholls and Tol 2006; Wood et al. 2014). Moving nests, 
for instance away from light sources, high-use areas or 
areas of inundation and erosion, is also possible, and 
may be increasingly important in the future to 
safeguard endangered turtle populations (Pfaller et al. 
2008). However, it is labour-intensive and requires 
relocation within two hours of oviposition to ensure 
maximum survival of moved egg clutches (Berry et al. 
2013).  

High sand temperatures can dramatically reduce 
hatchling success by increasing mortality of embryos 
(Wood et al. 2014). Furthermore, the sex ratio of 
embryonic marine turtles is determined by nest 
temperature (cooler nests tend to produce males, and 
warmer nests females), and climate change is likely to 
affect these ratios. Chronically biased sex ratios can 
eventually lead to population collapse (Pike 2014). 
Hatchling success is also affected by coastal 
development, especially in areas with bright lighting at 
night. Various solutions exist for this, including changes 
to the timing of lighting, the use of low-pressure 
sodium-vapour lights (which have proven less disruptive 
to at least loggerheads), reducing the number of lights, 
building light-barriers, and educating nearby residents 
(Berry et al. 2013). 

Maintaining connectivity to suitable nesting habitat 
near existing nesting beaches, especially inland, will 
make a considerable difference to the capacity for 
nesting turtles to adapt to sea level rise. 

Modelling studies exist that have explored different sea 
level rise scenarios in relation to known turtle nesting 
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beaches (Daniels et al. 1993; Fish et al. 2005; Fuentes et 
al. 2010b; Katselidis et al. 2014). Katselidis et al. (2014) 
identified areas of beach currently used by turtles, the 
area anticipated to become inundated under each of 
three sea level rise scenarios, the area anticipated to 
become unsuitable for nesting under each scenario, the 
potential for habitat loss under each scenario, and the 
extent to which the beaches were likely to shift in 
relation to natural (i.e. cliffs) and artificial (i.e. beach 
front development) physical barriers. Similarly to other 
studies, they found considerable nesting habitat loss 
(31-48%) even under the most conservative scenario, 
but losses were much more pronounced when there 
were barriers. Maintaining connectivity to suitable 
nesting habitat near existing nesting beaches, especially 
inland, will make a considerable difference to the 
capacity for nesting turtles to adapt to sea level rise. In 
Australia, a similar study on islands of the far northern 
GBR concluded that up to 38% of green turtle rookeries 
could be inundated (Fuentes et al. 2010b).  

The identification and protection of feeding grounds 
will also provide an important buffer to changing 
climate conditions.  

Turtles in the coastal waters of the WTC Region feed 
primarily on seagrass beds and coral reefs. Both are 
under increasing pressure from a number of human 
impacts. Locating, protecting and enhancing turtle 
feeding habitats can ensure that adult turtles in coastal 
waters are able to persist. Seagrass and coral reef 
adaptation options are described in the following 
sections (Dugongs and Coral reefs).  

Reductions in direct mortality from boat strike, 
fisheries by-catch, plastic debris and disease must be 
controlled, and stranded turtle rehabilitation need to 
continue. 

Reductions in fisheries by-catch have already take place 
in Australian coastal fisheries, mainly through the 
implementation of turtle excluder devices (or 
TEDs)(Brewer et al. 2006). Identifying the intersections 
between foraging habitat and migration pathways and 
commercial fisheries can further help managers target 
these areas for conservation actions (Griffin et al. 
2013). Ghost nets also continue to cause significant 

mortality in turtle populations in the Torres Strait and 
off Cape York; ongoing research seeks to understand 
and mitigate this impact (Wilcox et al. 2012). In areas 
where traditional sea turtle hunting continues, it is 
crucial that modern and traditional styles of 
management be interwoven to find a balance between 
resource management and conservation (Butler et al. 
2012). Ongoing active rehabilitation of stranded and 
injured turtles should continue, especially the quest to 
discover the causes and sources of disease (Flint et al. 
2010) and the reduction of plastic debris available for 
ingestion (Schuyler et al. 2013).  

Dugongs 

Protecting dugong feeding habitat and reducing direct 
anthropogenic mortality should be the priorities of 
any adaptation program. 

The primary issues facing dugong populations are 
incidental catch, subsistence use, habitat destruction, 
and impacts of oceanic pollution (Gillespie 2005). On 
the GBR, the threats that most urgently require 
management are commercial netting and indigenous 
hunting, and vessel traffic, terrestrial runoff and 
commercial netting in more urbanised areas (Grech and 
Marsh 2008). Seagrass beds, the primary food source of 
dugongs, are being lost globally and in Australian 
coastal waters (Waycott et al. 2009). 

As with marine turtles, protecting dugong habitat 
should be one of the priorities of any adaptation 
program with climate change in mind. The re-zoning of 
the Great Barrier Reef Marine Park in 2004 included the 
consideration of dugong habitat, but fell short of 
protecting 50% of high priority dugong habitat as 
recommended in the design guidelines (Dobbs et al. 
2008). Consideration should be given to the fact that 
high priority dugong habitat identified then may have 
disappeared or moved; mapping current habitats and 
tracking their future movement will indicate where 
changes in protection might be required. Predictive 
modelling has been used to map known and likely 
seagrass habitats (Grech and Coles 2010), this could be 
expanded to indicate the likely future extent of seagrass 
beds. Seagrass is highly responsive to water quality 
(Grech et al. 2011), potentially exacerbating periodic 
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seagrass dieback and adversely affecting reproduction 
and survival of dugongs (Marsh and Kwan 2008). Water 
quality must be improved if the inshore areas of the 
GBRMP are to provide suitable habitat for resilient 
ecological communities into the future (see also Coral 
reef section). Some water quality thresholds from the 
inshore GBR include: 

 Mean daily irradiance > 5 mol m
−2

 d
−1

 was 
associated with gains in seagrass; 16–18% of days 
below 3 mol m

−2
 d

−1
 was associated with more than 

50% seagrass loss (Collier et al. 2012). 

 Four hours of light saturated irradiance was 
associated with increases in seagrass abundance, 
and less than 4 hours of light saturated irradiance 
with more than 50% loss (Collier et al. 2012). 

Dugong mortality can be minimised through fishing 
closures, gear modification and boating restrictions. 

Minimising direct mortality should also continue to be a 
priority, including fishing closures, gear modification 
(Hodgson et al. 2008), and boating restrictions. 
Commercial netting has been one of the most 
significant sources of dugong mortality on the GBR, but 
the rezoning of the GBRMP significantly reduced this 
threat (Grech et al. 2008). Gear modification of coastal 
fisheries with TEDs and by-catch reduction devices have 
further reduced direct mortality (Brewer et al. 2006). 
Minimising boat strike mortality must include speed or 
even access restriction of boats in critical dugong 
habitat, coupled with better knowledge of dugong 
movements (Whiting 2008). The management of 
traditional dugong hunting is a complex cultural, social, 
economic and environmental issue that continues to 
receive considerable attention (Kwan et al. 2006). 

Coral reefs 

Creating protected areas achieves rehabilitation of 
coral reef systems. 

On coral reefs, local management actions are often 
focused on the reduction of immediate human 
pressures (Graham et al. 2013), such as by creating 
protected areas or reserves, with the hope that these 

will support the recovery of intact food webs, and 
therefore support the resilience of the community to 
the more global effects of climate change (Hughes et al. 
2010; McClanahan et al. 2011; Pandolfi et al. 2011). 
This has proven to be successful in places where 
fisheries target a wide variety of prey including 
herbivores; once herbivores are protected, they reduce 
algal biomass and support the dominance of corals. On 
the GBR, herbivores are not targeted by fisheries; no-
take areas generally result in the recovery of large 
piscivores such as coral trout and sharks. The most 
important factor in ensuring that marine reserves 
adequately protect the ecosystems within them is 
ensuring compliance (Pollnac et al. 2010). Building 
adaptive capacity to climate change into the design of 
marine reserve networks will require careful planning 
around size, shape, representation, connectivity and 
ecosystem-based management (Table 2.6) (McLeod et 
al. 2009). 

In addition to recommendations following McLeod et 
al. (2009), a recent study outlines a framework to 
incorporate both climate change and connectivity into 
conservation planning (Magris et al. 2014). The 
following set of complementary approaches is 
described which relate to marine reserves: 

1. stating preferences for spatial configuration of 
marine reserves and their placement relative to 
critical areas in the seascape 

2. applying generic ‘rules of thumb’ for size and 
spacing of marine reserves 

3. tailoring replication and representation objectives 
to the requirements of specific conservation 
features 

4. using ecological insights to guide rules for spatial 
relationships among features in decision support 
tools 

5. defining objectives for structural or functional 
surrogates 

6. predicting and targeting functional surrogates based 
on analysis of dynamics (Magris et al. 2014). 

 

  



 

 Adaptation Pathways and Opportunities for the Wet Tropics NRM Cluster region 

 
47 

Table 2.6 Recommendations for marine reserve design to maximise adaptation to climate change.  

CATEGORY RECOMMENDATIONS 

Size Bigger is better - MPAs should be a minimum of 10-20 km in diameter to be large enough to protect the 
full range of marine habitat types and the ecological processes on which they depend, and to 
accommodate self-seeding by short distance dispersers. 

Shape Simple shapes should be used, such as squares or rectangles, rather than elongated or convoluted ones, to 
minimise edge effects while maximising interior protected area. 

Risk spreading 
(representation, 
replication and 
spread) 

Representation: protect at least 20-30% of each habitat type. Replication: protect at least three examples 
of each marine habitat type. Spread: ensure that replicates are spread out to reduce the chances they will 
all be affected by the same disturbance event. Select MPAs in a variety of temperature regimes using 
historical sea-surface temperatures and climate projections to ameliorate the risk of reefs in certain areas 
succumbing to thermal stress caused by climate change. 

Critical areas Protect critical areas that are biologically or ecologically important, such as nursery grounds, spawning 
aggregations, and areas of high species diversity. Protect critical areas that are most likely to survive the 
threat of climate change (e.g. areas that are naturally more resilient to coral bleaching).These may include 
areas cooled by local up welling, areas shaded by high, steep-sided islands or suspended sediments and 
organic material in the water column, reef flats where corals are adapted to stress, and areas with large 
herbivore populations that graze back algae and maintain suitable substrates for coral larvae to settle on. 

Connectivity Take biological patterns of connectivity into account to ensure MPA networks are mutually replenishing, to 
facilitate recovery after disturbance. MPAs should be spaced a maximum distance of 15-20 km apart to 
allow for replenishment via larval dispersal. Accommodate adult movement of mobile species by including 
whole ecological units (e.g. offshore reef systems) and a buffer around the core area of interest. Where 
this is not possible (e.g. coastal fringing reefs), protect larger versus smaller areas. Take connectivity 
among habitat types into account by protecting adjacent areas of coral reefs, seagrass beds, and 
mangroves. Model future connectivity patterns to identify potential new coral reef substrates, so that 
measures can be taken to protect these areas now, and accommodate expansion of coral distribution to 
higher latitudes. 

Maintain 
ecosystem 
function 

Maintain healthy populations of key functional groups, particularly herbivorous fishes that feed on algae, 
facilitating coral recruitment and preventing coral-algal phase shifts following disturbances. 

Ecosystem-based 
management 

Embed MPAs in broader management frameworks that address other threats external to their boundaries 
(e.g. integrated coastal zone management or an ecosystem approach to fishing). Address sources of 
pollution (especially enrichment of water), which create conditions that favour algal growth and prevent 
coral larvae from settling. Monitor changes in precipitation caused by climate change that may increase 
runoff and smother reefs and seagrass beds with sediment 

Source: McLeod et al. (2009). 

 

The benefits of restoring coral reefs currently 
outweigh the costs, except at very localised scales, but 
opportunities for improving restoration options should 
be considered, as this may be increasingly necessary in 
the future. 

While marine reserves continue to be the most 
common marine conservation tool, some scientists call 
for a wider range of approaches, including 
unconventional options (Table 2.7) (Rau et al. 2012). 
More direct local actions may involve active restoration 
through the transplantation of corals (especially more 
heat-tolerant species, populations or symbiont clades) 
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to heavily degraded sites. In the context of climate 
change, active coral reef restoration remains hotly 
debated (Bellard et al. 2012; Briggs 2009). Generally, 
active restoration has been possible only at very small 
scales, and only with a limited range of coral species 
(Omori 2011). Only recently has coral “gardening” been 
advocated and trialled on a larger scale (Rinkevich 
2008); in a recent study 10,000 planulae of the 
brooding coral Stylophora pistillata were reared to 5-
month-old colonies - essentially genotypes of equal size 
to small branch fragments - requiring 676 person-hours 
(Linden and Rinkevich 2011). Critics argue that the cost 
outweighs the benefits due to the uncertainty of 

survival and establishment of transplanted populations 
at a new location, and the effects of relocated species 
on local populations may be detrimental. However, in 
some cases relocation (or “assisted colonisation”) may 
be the only way for keystone species to overcome 
dispersal or migration barriers (Hoegh-Guldberg et al. 
2008). The actual goal of restoration (enhancing coral 
cover or diversity, maintenance of heterogeneity, or 
recovery or endangered species) should drive the 
choice of species used (Muko and Iwasa 2011), and 
frameworks are being developed to manage the 
decision process and costings of relocation for climate 
change (Richardson et al. 2009). 

 

Table 2.7 Examples of conventional and unconventional conservation methods, and their potential to address the global 
stressors of temperature, CO2 acidity, and excess atmospheric CO2. X denotes direct effect; (X) indicates possible indirect effect; ? 
indicates uncertain.  

CONSERVATION METHOD STRESSOR ADDRESSED CONSERVATION METHOD STRESSOR ADDRESSED 

Conventional: Temp Acid CO2 Unconventional: Temp Acid CO2 

Marine reserves and 
coastal zone management 

? ? ? Physical — for example, sun 
shading, solar-radiation 
management; increased 
upwelling 

X  (X) 

Pollution and watershed 
management 

? ? ? Biological — for example, 
selective breeding, artificial 
selection, genetic 
engineering; creation of 
refuges; artificial 
preservation of genetic stock 

X X (X) 

Fisheries, shipping and 
recreation management 

? ? ? Chemical — for example, 
chemical, electrochemical or 
geochemical modification of 
seawater (alkalinity addition, 
pH elevation) 

(X) X X 

Carbon dioxide emissions 
reduction — increase 
energy efficiency and non-
fossil fuel energy use; 
decarbonise fossil energy 

X X X Hybrid and other approaches 
— for example, conversion of 
waste carbon dioxide to 
ocean alkalinity; storage of 
land crop waste in ocean; 
ocean fertilisation 

(X) X X 

Source: Rau et al. (2012) 
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Rehabilitation may also consist of recreating underlying 
structural complexity where this has been destroyed 
(e.g. dredging, trawling, storms), giving settling coral 
larvae a chance to become established. Timing of 
restoration activities is likely to be crucial, and should 
coincide with relatively stable climatic periods (e.g. 
outside the cyclone / flood season) and periods of coral 
recruitment and episodic macroalgal die-off (Graham et 
al. 2013). Reef restoration has not been widely applied 
in Australia, but a risk assessment framework exists for 
minimising uncertainty (Hoegh-Guldberg et al. 2008). 
Translocation of corals to higher latitudes, which are 
the most likely refugia for tropical coral reefs in 
warming seas, has not yet been attempted (Beger et al. 
2014). Difficulties arise based on the symbiosis between 
corals, their zooxanthellae and other microorganisms; 
within this complex relationship, the thermal tolerance 
of all components must be taken into account (Fine et 
al. 2013; Oritz et al. 2014; Weis 2010). 

Structural complexity is the most important 
restoration focus for coral reef communities. 

Any active restoration efforts should consider that coral 
reef communities depend on the coral for structural 
complexity more than anything else. Some fish eat live 
coral, and many others recruit into live coral (Graham et 
al. 2013; Pratchett and Berumen 2008), but much of the 
community depends on structural complexity over and 
above live coral cover. Once the coral dies, it can take 
years for the structure to erode to the point where the 
community shifts to an alternate stable state (Graham 
et al. 2013). This means that if the early stages of a shift 
are detected, the likelihood of a reversal is much higher 
(Graham et al. 2013). Steps that can be taken to halt or 
reverse a phase shift include timely management of 
fisheries to enhance large fishes, bolstering processes 
such as herbivory, and ensuring that habitat structure is 
not further eroded. 

Identifying future refugia for coral reef organisms, or 
even whole coral reef communities, will be a crucial 
factor in assisting coral reef adaptation to climate 
change. 

Coral reef organisms are likely to expand southward 
along the Queensland coast, as those closer to the 

equator reach the limits to their thermal tolerance, and 
southern waters warm to the point of providing 
favourable temperatures (Beger et al. 2014). Identifying 
future refugia for coral reef organisms, or even whole 
coral reef communities, will be a crucial factor in 
assisting coral reef adaptation to climate change. To 
this end, protection of subtropical reefs and future 
suitable reef habitat needs to be strengthened (Beger 
et al. 2014). Identifying source reefs and connectivity 
pathways (Beger et al. 2010), and enhancing 
connectivity between source reefs and future potential 
refugia will also become increasingly important; there 
will be a need to prioritise areas of lower 
environmental stress, relative climatic stability and high 
social and economic adaptability (Cinner et al. 2011). 
Modelling occurrences of high sea surface temperature 
anomalies on the GBR has already taken place (Ban et 
al. 2012), as well as the association between climate 
stress and coral reef diversity in the western Indian 
Ocean (McClanahan et al. 2011); extending this 
modelling to identify areas to the south likely to 
maintain temperatures that are relatively stable could 
be the next step.  

Inshore reefs of the GBR are urgently in need of 
improved water quality management, both at the 
catchment scale and locally (e.g. around ports).  

Currently, inshore reefs are in a state of decline 
because a naturally low density of large herbivores, 
high sedimentation rates and the artificial input of 
nutrients are enhancing the growth of macroalgae, and 
in recent years higher temperatures have prevented 
the seasonal macroalgal die-off. Additionally, it is 
thought that elevated nutrients enhance the survival of 
larvae of the corallivorous crown of thorns (COTs) sea 
star Acanthaster planci, which has been a major factor 
in coral cover decline on the Great Barrier Reef (De'ath 
et al. 2012; Sweatman et al. 2011), although not on 
inshore reefs. Most A. planci (corallivorous sea star, see 
coral reef section) larvae starve in conditions of 
chlorophyll < 0.5 µgL

-1
. Above this level, there is a rapid 

increase of larval survival (Brodie et al. 2005). Coral 
restoration has been trialled in turbid inshore reefs in 
Singapore, with marginal success, but farmed corals 
that survived the initial 14 months had high growth 
rates and established persisting colonies (Bongiorni et 
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al. 2011). High turbidity areas (e.g. the inshore GBR) 
may be suitable only to heterotrophic coral species with 
effective self-cleaning capacity (De'ath and Fabricius 
2010). This has yet to be trialled on the GBR; ultimately, 
fundamental water quality problems need to be 
resolved before serious restoration activities can be 
considered (De'ath and Fabricius 2010; Grech et al. 
2013). On the GBR coast, the Reef Water Quality 
Protection Plan (http://www.reefplan.qld.gov.au/) was 
put in place in 2003, and regularly releases “Report 
Cards” to measure its performance. By 2011 there had 
been some improvements (Reef Water Quality 
Protection Plan Secretariat 2013), but clearly better 
cooperation between local, state and federal 
governments and coastal developers will be crucial to 
secure lasting improvements. On the inshore GBR, 
various water quality measures (especially turbidity and 
chlorophyll concentration) were found to be good 
predictor of changes in biotic variables, but authors 
cautioned that thresholds may change spatially and 
temporally (Collier et al. 2012; de Boer 2007).  

Inshore reefs bear the brunt of increased macroalgal 
growth as one of the responses to declining water 
quality (De'ath and Fabricius 2010). These reefs have 
naturally low herbivore biomass, and it may be useful 
to introduce invertebrate grazers like sea urchins or 
trochus (Villanueva et al. 2010)– which already occur in 
low densities – this would need to be properly trialled 
on fenced-off tracts of reef, to test for unfavourable 
interactions and outcomes. The captive breeding and 
introduction of marine species may be possible for 
some – where larval rearing techniques have been 
developed, and species are introduced into parts of 
their existing ranges where they may have become 
scarce – but introductions have had varying effects on 
the receiving environments, from boosting biodiversity 
and restoring ecological function (Bellard et al. 2012) to 
becoming dangerous pests (Albins and Hixon 2008; 
Gaither et al. 2013). 

Small islands of the Torres Strait 

Many of the required strategies for adapting to 
climate change in the Torres Strait will ultimately 
protect both human populations and ecosystems. 

Small islands, such as those that predominate in the 
Torres Strait, are vulnerable to sea level rise, seawater 
intrusion into freshwater lenses, increased storm 
intensity and elevated temperatures (Hilbert et al. 
2014). Their small size, relatively large coastal zones 
and isolation compound these impacts through 
restricting migration options and maximising exposure 
to coastal impacts. Changes in fire regimes and new 
pest and weed incursions could also have a 
disproportionally large impact on island vegetation and 
fauna communities. With changes to species ranges, 
the Torres Strait islands could also act as stepping-
stones for diseases and exotic pests arriving from the 
north.  

Adaptation planning for the Torres Strait is primarily 
concerned with human communities, but a growing 
body of research is establishing critical baseline data 
from many Torres Strait species and ecosystems which 
have been relatively understudied to date. Human and 
ecological systems in the region are strongly 
interlinked. Torres Strait ecosystems are mostly very 
healthy and adaptations options are limited, focusing 
primarily on reducing current anthropogenic stressors. 
Some of the required adaptation strategies will help to 
reduce climate change impacts on human populations 
and ecosystems, but there will also be trade-offs such 
as communities having to relocate to higher ground and 
into areas currently occupied by fauna and flora 
communities. 

For islands large enough to benefit from conservation 
actions, adaptation measures will be similar to those 
described for coastal assemblages turtles, dugongs, 
seagrass beds and coral reefs. 

Unlike mainland coasts, coastal communities migrating 
away from a shoreline affected by sea level rise on 
small islands will very rapidly run out of space, and 
simply disappear (Green et al. 2009). Coral cays may 
initially experience some growth as sea levels rise, but 
in the longer term this is likely to be overtaken as the 
rate of rise increases. Given a group of small islands 
such as the Torres Strait, identifying refugia and future 
habitat may therefore need to include identifying 
“sacrificial” islands for which nothing can be done. For 
those that can benefit from conservation actions, 
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adaptation measures will be similar to those described 
for coastal assemblages turtles, dugongs, seagrass beds 
and coral reefs (see Turtles, Dugongs and Coral reefs 
sections above). Adaptation measures will need to be 
applied on an island by island basis (Figure 2.6) (Duce et 
al. 2010). In some cases, soft adaptation measures such 
as beach and mangrove revegetation, beach and berm 
nourishment will be preferable to most expensive 
options such as building hard erosion control structures 
(Duce et al. 2010). However, for many islander 
communities living in the coastal hazard zone on low-
lying islands, seawalls are the only viable short to mid-
term option to reduce the impacts of inundation and 
erosion. 

As with the GBR coast, reducing local impacts to coral 
reefs and seagrass beds will enhance their resilience to 
climate change effects. Turtle egg harvesting is a 
culturally important activity that poses an additional 
threat to turtles nesting in the Torres Strait; moving egg 
harvesting activities to areas where the sand has 
exceeded the threshold for hatchling survival may be a 
further adaptation measure to protect nesting turtles 
(Fuentes et al. 2010a). 

  

 

Figure 2.6 Drivers of change and potential consequences of different adaptation options specific to small islands 

Source: Duce et al. (2010) 
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Flying foxes 

Due to their flying large distances, adaptation 
strategies for flying foxes will need to be considered 
via a whole-landscape approach. 

Australia’s mainland flying-foxes (Chiroptera: 
Pteropodidae, Pteropus spp.) are large, highly mobile, 
flying mammals capable of travelling more than 20 km 
in one night (Markus and Hall 2004; Parsons et al. 2006) 
and hundreds of kilometres whilst migrating (Tidemann 
and Nelson 2004; Webb and Tidemann 1996). 
Therefore, adaptation strategies need to be considered 
via a whole-landscape approach. Flying-foxes are 
susceptible to extreme temperatures, and adaptation 
options during extreme heat waves include spraying 
camps with water to aid evaporative cooling 
(Welbergen et al. 2008). Range expansions and 
contractions have been shown and suggested in both 
the black flying-fox Pteropus alecto and the grey 
headed flying-fox Pteropus poliocephalus (Parsons et al. 
2010; Roberts et al. 2012) but have not been shown as 
being attributable to climate change (Roberts et al. 
2012).  

The increasing urbanisation of flying-fox camps will 
need to be managed through public education and 
when non-lethal dispersals occur; the impacts will 
need to be closely monitored  

Flying-fox camps have increasingly been found in urban 
areas, resulting from the growth of urban areas into 
existing camps and from flying–foxes establishing new 
camps in urban areas (for example, the Royal Botanic 
Gardens, Melbourne)(Parris and Hazell 2005; van der 
Ree et al. 2006; Williams et al. 2006a). It has been 
suggested that new camps being established in urban 
areas is a result of the urban heat island effect (Parris 
and Hazell 2005) and urban planting providing access to 
reliable, year round resources (Williams et al. 2006a). 
The increased presence of camps in urban 
environments has led to conflict in these communities. 
These conflicts result from public health concerns about 
virus transmission and complaints about noise, smell 
and tree defoliation (Roberts et al. 2011; Thiriet 2005, 
2010). As a result, the non-lethal dispersal of camps has 
been attempted at a number of sites using noise, light, 

smoke, smell and roost modification (Roberts et al. 
2011).  

The long-term effect of dispersal attempts on flying-
foxes is not known but regulations in regard to the 
timing of dispersals attempts to minimise the impact on 
populations. Spectacled flying-foxes Pteropus 
conspicillatus in the Wet Tropics region have recently 
had an increased number of dispersal attempts as a 
result of state government reforms. This is despite the 
species being listed as vulnerable (EPBC 1999). The 
impact that these dispersals have at the population 
level is unknown but dispersals can result in abandoned 
young, aborted foetuses and stresses on individuals 
(Thiriet 2005). Educating the community about human 
health risks and ways to live with flying-foxes could 
result in a reduction in dispersal attempts. In instances 
where dispersal is deemed necessary, the population 
will need to be closely monitored and dispersal ceased 
when mortality and/or injury occurs. 

The greatest limiting factor for flying-fox persistence in 
the future is the quality and availability of food 
resources. Adaptation planning for these species 
should start with a good understanding of spatial and 
temporal resource distribution. 

All four Australian mainland flying-foxes rely on a 
continuous temporal sequence of flowers and fruit (Eby 
and Law 2008; Parsons et al. 2006) and their success in 
Australia’s patchy landscape has been attributed to 
their capacity to travel great distances to exploit 
resources and their adaptable diet (Birt et al. 1997). 
With predicted increases in temperature, CO2 in the 
atmosphere and in particular precipitation seasonality 
(Pachauri and Reisinger 2007), the availability, 
nutritional quality, and distribution of plant resources is 
predicted to change (Hughes 2003; Lawler et al. 1997). 
The greatest limiting factor for flying-fox persistence in 
the future is the quality and availability of these food 
resources. Currently, food shortages are faced by many 
flying-fox species in the winter and many habitats 
where winter forage is available have been heavily 
cleared or are not protected (Eby and Law 2008). 
Adaptation planning for these species should start with 
a good understanding of spatial and temporal resource 
distribution. Suitable foraging habitat needs to be 
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established through habitat restoration and protected 
areas, linked by migration corridors and is in proximity 
to suitable roosting habitat. Nectar mapping is available 
for Grey headed flying-foxes, Pteropus poliocephalus 
throughout their range in Victoria, New South Wales, 
ACT and Queensland (Eby and Law 2008).  

Birds 

Garnett et al. (2013) conducted a continent wide 
analysis of the effects of climate change on Australian 
birds, and identified species in the Wet Tropics 
bioregion and Cape York Peninsula as amongst the most 
likely to lose suitable climate space, as corroborated by 
earlier studies (Reside 2011; Reside et al. 2012).  

Species-specific adaptation actions for birds will need 
to take into account ecology, but general management 
to increase the adaptive capacity of the entire WTC 
Region will benefit a suite of species.  

A large number of at-risk endemic species overlap in 
location, such as in the Wet Tropics uplands rainforests, 
and thus general adaptation management actions such 
as identification of climate refugia, habitat restoration 
ad control of introduced pest species should benefit a 
suite of species. The relatively intact landscapes of Cape 

York Peninsula and the Wet Tropics uplands are the 
regions where most in situ adaptation (e.g. fire, weed 
and feral animal management) will need to occur, and 
where climate change refugia need to be identified 
(Garnett et al. 2013).  

The most important adaptation actions for birds will 
be managing current stressors, and in situ 
management including refugia identification and 
protection. Expensive ex situ options such as captive 
breeding and assisted migration should be considered 
a last option.  

The most cost effective method for conservation of 
avian species threatened by climate change will be in ‘in 
situ’, through identification and protection of climate 
refugia, and for the most threatened species, through 
specific management actions such as artificial nest site 
creation, and human-made microhabitat refugia such as 
nest boxes. For the most endangered birds, ‘ex situ’ 
actions including captive breeding will be necessary, 
though this should be considered a last option only if a 
species is unlikely to survive in the wild. Using the three 
categories for adaptation strategies for birds discussed 
in Garnett et al. (2013), and shown in Table 2.1, we 
develop case studies for adaptation pathways for two 

 

Figure 2.7 Adaptation Pathways – Case Study 1 – Golden shouldered parrot Psephotus chrysopterygius. 
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of the regions birds identified as being at high risk from 
climate change (Figure 2.7 and Figure 2.8). 

The golden shouldered parrot is endemic to CYP and 
has been identified as being at high risk from climate 
change, having high sensitivity and high exposure 
(Garnett et al. 2013). It is also at risk from woody 
thickening, which has been associated with climatic 
change and CO2 levels (Crowley et al. 2004). Immediate 
and ongoing actions listed above are already in place 
for this species, and management guidelines for its 
conservation are well established (i.e. Crowley et al. 
2004). Future adaptation actions could include assisted 
colonisation and/or the possibility of developing 
artificial nesting sites. 

The golden bowerbird is endemic to the high-altitude 
rainforest habitats of the Wet Tropics bioregion, and 
has long been identified as highly vulnerable to climate 
change due to its restricted geographical range and 
high ecological specificity (Garnett et al. 2013; Hilbert et 
al. 2014; Isaac et al. 2009; Shoo et al. 2005). Despite 
this, and in contrast to the Golden Shouldered Parrot, 
this species has no ongoing or planned conservation 
actions, and no management guidelines for its 
protection exist; it is currently listed as ‘least concern’ 
internationally and regionally (IUCN and DEHP 
Queensland). However, species surveys have been 
conducted for more than two decades (Williams et al. 

2010), and modelling of climate change refugia in the 
WTC Region is ongoing. This species has been 
highlighted as one for whom assisted colonisation may 
be required in the future (Thomas 2011). 

Cassowaries 

Landscape connectivity will greatly improve the 
cassowary’s chances of survival.  

Improving landscape connectivity and building 
resilience will be key strategies to ensure that 
cassowaries have the capacity to adapt to shifting 
climatic zones (National Biodiversity Strategy Review 
Task Group 2009). The spatial adaptation strategies 
need to be focused on the 8 identified priority key areas 
in the WTC Region as identified in the recovery plan 
(Latch 2007). Suggested methods include:  

 increasing the connectivity between ecosystem 
networks on a large spatial scale 

 protection of sites in parts of the species’ range 
where the climate is predicted to remain suitable 
over time 

 isolated cassowary habitat that is within the new 
suitable climate zones will need to be linked to the 
nearest climate-proof and functional habitat 
network 

 

Figure 2.8 Adaptation Pathways – Case Study 2 – Golden Bowerbird Priondurus newtoniana 
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 optimise sustainable networks in climate refugia, 
the part of the cassowary’s range where the climate 
remains stable 

 increase colonising capacity in parts of the habitat 
network that remains suitable in future climate 
scenarios  

 inclusion in (and updating) of the Recovery plan for 
the southern cassowary Casuarius casuarius 
johnsonii (Latch 2007) of treatment for the potential 
effects of climate change as well as inclusions as a 
threat specifically for the cassowary in the Back on 
track Actions for biodiversity plans (Department of 
Environment and Resource Management 2010)  

 implement strategies to conserve cassowary habitat 
on private lands, nature refuges 

 promote co-management of areas with Indigenous 
people (particularly coastal lowlands). 

Additionally, monitoring the populations and 
abundance of cassowaries is crucial to their successful 
management.  

Other suggested strategies at the property level are 
provided by the Queensland Government’s Department 
of Environment and Heritage Protection - 
http://www.ehp.qld.gov.au/wildlife/threatened-
species/endangered/endangered-
animals/cassowary.html.  

 
  

http://www.ehp.qld.gov.au/wildlife/threatened-species/endangered/endangered-animals/cassowary.html
http://www.ehp.qld.gov.au/wildlife/threatened-species/endangered/endangered-animals/cassowary.html
http://www.ehp.qld.gov.au/wildlife/threatened-species/endangered/endangered-animals/cassowary.html
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Summary of adaptation options for biodiversity 
Table 2.8 Major impacts of climate change on biodiversity and potential adaptation options. Adaptation options that also 
potentially mitigate greenhouse gas emissions are marked (M). 

  EXAMPLE ADAPTATION OPTIONS 

Climate change Major impacts Protect Accommodate Retreat 

Combined climate 
change effects 

1. Areas within species’ 
current geographic 
distribution will become 
unsuitable.  

  Identify, conserve 
and restore refugia, 
especially those that 
protect from 
multiple impacts, 
and for species not 
currently occurring 
in the WTC region; 

 Promote functional 
connectivity at all 
spatial scales to aid 
species in accessing 
resources and 
refugia (M); 

 Use ‘composite 
provenancing’ of 
seeds in restoration; 

 Adapt fire, weed and 
feral animal 
management to 
promote in situ; 

 Create artificial 
microhabitats. 

 Assisted colonisation 
to new or historic 
locations; 

 Assisted 
interbreeding 
between 
populations; 

 Seedbanking 

 

 

2. Small islands are 
vulnerable to impacts 
and have limited 
migration opportunities. 

  Manage trade-offs, 
e.g., relocation of 
human communities 
to areas that are 
currently in natural 
state. 

 Identify ‘sacrificial 
islands’ for which 
conservation 
adaptation options 
are severely limited. 

Increased average 
temperatures 

1. Exceed thermal 
tolerances of terrestrial 
species, marine and 
coastal communities; 
leading to reduced 
survival, growth and 
reproduction in parts of 
current range. 

 

  Conserve thermal 
refugia within 
species’ current 
distributions; 

 Conserve or improve 
functional 
connectivity with 
thermal refugia (M); 

 Assisted gene flow 
with populations on 

 Conserve thermal 
refugia outside 
species’ current 
distributions;  

 Conserve or improve 
functional 
connectivity with 
thermal refugia (M);  

 Assisted 
translocation; 
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  EXAMPLE ADAPTATION OPTIONS 

‘hot periphery’ of 
current distribution. 

 Ex-situ conservation. 

2. Exceed thermal 
tolerance of coral reef 
organisms 

  Manage existing 
threats to inshore 
reef water quality, 
e.g., high 
sedimentation rates; 

 Identify and enhance 
connectivity to 
refugia; 

 Trial introduction of 
invertebrate 
herbivores to limit 
macroalgal growth. 

 Translocation of 
corals to higher 
latitudes. 

3. Changed fire frequency, 
intensity, extent and 
timing  

Active management to 
exclude fire from some 
systems (M). 

 Active fire 
management to 
promote desired 
vegetation 
communities (M);  

 Conserve fire refugia 
within species’ 
current distributions;  

 Conserve or improve 
functional 
connectivity with fire 
refugia (M). 

 Conserve fire refugia 
outside species’ 
current 
distributions;  

 Conserve or improve 
functional 
connectivity with 
fire refugia (M);  

 Ex-situ conservation. 

 4. Increased survival, 
growth and reproduction 
of certain species, 
potentially including 
introduced species 

  Management 
intervention to 
remove undesirable 
species and mediate 
negative impacts. 

 

 5. Impacts on freshwater 
ecosystems 

  Preserve or restore 
riparian vegetation 
cover (M); 

 Preserve and 
enhance ground 
water flows by 
minimising fine 
sediment input. 

 

 6. Immigration of plants 
and animals from other 
regions 

  Conserve thermal 
refugia for species 
from other regions;  

 Conserve or improve 
functional 

 Ex-situ conservation. 
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  EXAMPLE ADAPTATION OPTIONS 

connectivity with 
thermal refugia for 
species from other 
regions (M). 

Sea level rise  1. Sea water inundation of 
fresh water bodies in 
coastal areas; Increased 
tidal reach in coastal 
watercourses 

 Sea walls, dykes, 
storm surge barriers;  

 drainage channels, 
tidal gates 

 Conserve freshwater 
refugia within 
species’ current 
distributions;  

 Conserve or improve 
functional 
connectivity with 
freshwater refugia. 

 Conserve freshwater 
refugia outside 
species’ current 
distributions;  

 Conserve or improve 
functional 
connectivity with 
freshwater refugia;  

 Ex-situ conservation. 

2. Loss of turtle nesting 
beaches 

 Construct sea walls, 
groynes, beach 
nourishment and dune 
building . 

 Conserve landward 
buffer zones around 
current nesting 
beaches. 

 Move nests from 
areas of inundation 
and erosion; 

 Ex situ conservation. 

 3. Sea water inundation of 
coastal vegetation 
communities 

  Conserve landward 
sea level rise refugia 
within ecosystems’ 
current distribution;  

 Conserve or improve 
functional 
connectivity with sea 
level rise refugia (M). 

 Conserve landward 
sea level rise refugia 
outside ecosystems’ 
current distribution;  

 Conserve or improve 
functional 
connectivity with sea 
level rise refugia 
(M);  

 Ex-situ conservation. 

4. Impacts on freshwater 
ecosystems 

  Conserve, restore or 
enhance vegetation 
buffers to storm 
surges 

  

Extreme events 
(increased 
occurrence of 
high intensity 
cyclones, extreme 
rainfall events, 
heatwaves) 

1. Physical damage to 
terrestrial, freshwater 
and marine systems due 
to high winds, wave 
action and storm surge. 

  Management 
intervention to assist 
post-cyclone 
recovery. 

 

2. Damage to coral reefs 
and other marine 
systems through 
freshwater pulses and 
pollutant runoff  

Physical structures to 
mediate freshwater 
pulses. 

 Improve water 
quality management 
of inshore reef areas 
via catchment 
management actions 
(e.g., around ports);  

 Improve restoration 
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  EXAMPLE ADAPTATION OPTIONS 

of coral reefs; 

 Reduce other 
immediate 
anthropogenic 
impacts. 

3. Increased sedimentation 
of seagrasses, reducing 
feeding areas for 
dugongs 

  Control sediment and 
nutrient runoff 
control;  

 Reduce 
anthropogenic 
mortality. 

 

 4. Thermal tolerances of 
animal species exceeded 
during heatwaves, 
leading to reduced 
survival 

 

  Conserve heatwave 
refugia within 
species’ current 
distributions;  

 Conserve or improve 
functional 
connectivity with 
heatwave refugia 
(M); 

 Manage acute 
impacts, e.g., by 
spraying flying-fox 
camps with water. 

 Conserve heatwave 
refugia outside 
species’ current 
distributions; 
Conserve or improve 
functional 
connectivity with 
heatwave refugia 
(M);  

 Ex-situ conservation. 

5. Coral bleaching during 
heatwaves events 

 Sun-shading 

 

 Restoration of coral 
reefs;  

 Conserve heatwave 
refugia within 
current coral reef 
system; 

 Transplant heat-
tolerant coral 
species. 

 Conserve heatwave 
refugia outside 
current coral reef 
system; 

 Conserve or improve 
functional 
connectivity with 
heatwave refugia. 

 6. Increases in invasive 
species following 
disturbances 

  Prioritise control of 
species expected to 
exert highest threat, 
including new 
invasive species. 

 

More variable 
rainfall 

1. Changed patterns of plant 
and animal species’ 
patterns of growth and 
reproduction  

  Conserve hydric 
refugia within 
species’ current 
distributions;  

 Conserve or improve 
functional 

 Conserve hydric 
refugia outside 
species’ current 
distributions;  

 Conserve or improve 
functional 
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  EXAMPLE ADAPTATION OPTIONS 

connectivity with 
hydric refugia (M); 

 Assisted gene flow 
with populations on 
drier or wetter 
peripheries of 
current distribution. 

connectivity with 
hydric refugia (M);  

 Assisted 
translocation; 

 Ex-situ conservation. 

2. Impacts on fire regime, 
together with impacts 
of increased CO2 on fuel 
loads 

  Implement 
integrated fire 
management 
regimes, with 
attention to timing, 
intensity, frequency 
and extent of 
burning. 

 

3. Impacts on freshwater 
ecosystems 

  Ensure provision of 
environmental flows; 

 Maintain hydraulic 
habitat complexity. 

 

Increased ocean 
acidification 

1. Damage to coral reef 
systems and organisms 

  Selective breeding of 
tolerant stock; 

 Modification of sea 
water (e.g., alkalinity). 
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Monitoring adaptation 
outcomes 

Adaptation actions will require monitoring to 
ascertain whether they have produced desirable 
outcomes and to inform changes that may be 
required; ideally, monitoring would be embedded 
within an adaptive management framework.  

Based on recent reviews on the quality and outcomes 
of monitoring programs, Lindenmayer et al. (2012a) 
provided a set of guidelines for the implementation of 
monitoring programs in the future. Effective monitoring 
programs should:  

1. deliver information on trends in key aspects of 
biodiversity (e.g. population changes)  

2. provide early warning of problems that might 
otherwise be difficult or expensive to reverse  

3. generate quantifiable evidence of conservation 
successes (e.g. species recovery following 
management) and conservation failures 

4. highlight ways to make management more effective  

5. provide information on return on conservation 
investment.  

Below are a set of principles and considerations for 
successful monitoring programs. 

Monitoring programs should be initiated with a 
specific objective, or set of objectives, in mind.  

Optimal monitoring theory prescribes a decision-
making framework in which management and 
monitoring are 1) decided and designed, 2) 
implemented, 3) monitored, 4) evaluated, and 5) 
adapted according to explicit objectives and budget 
constraints (Gerber et al. 2005). The objectives of 
monitoring will inform what should be measured 
(Lindenmayer et al. 2012a).  

Monitoring should be embedded within an adaptive 
management framework that involves scientists, 
management agencies, funding agencies and 
government.  

A successful monitoring program informs management 

 

Figure 2.9 Example of an adaptive management cycle 

Source: http://www.cmar.csiro.au/research/mse/. 
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about parameters relative to objectives; usually change 
in one or more indicators (Gerber et al. 2005). This then 
triggers changes in management actions by highlighting 
environmental or ecological conditions that may 
indicate the limitations of current management 
practices (Werners et al. 2013). While best outcomes 
can be achieved if such trigger values are defined 
before the start of a program, this requires sound 
predictions of ecosystem responses to either the 
management action or the threat the action is 
supposed to mitigate (Figure 2.9). Methods for 
allocating resources optimally in monitoring are also 
ideally embedded within the adaptive management 
framework (Field et al. 2007), especially when it comes 
to allocating funding between monitoring and other 
management actions (Regan et al. 2005). The cost of 
monitoring, monetary benefits for users, the cost of 
management and economic discounting of profit are all 
considered (Gerber et al. 2005). 

The power to detect changes depends on the sampling 
design, methods, timing and frequency of the 
monitoring program.  

Whilst the specific methods are variable between 
ecosystems, they generally seek to balance the need for 
the power to detect change (which usually means more 
time, samples, equipment, personnel) and budgetary 
constraints (which usually means less of the above). It is 
recognised that there is a need to invest in long-term 
monitoring, in adequate data storage and reporting 
mechanisms, in ongoing training for emerging 
ecologists to continue the monitoring effort in the long 
term and in continuously updating monitoring methods 
as new technology emerges (Lindenmayer et al. 2012a). 
Citizen science is emerging as a low-cost option for 
long-term monitoring that additionally has the benefit 
of educating and engaging the public (Tulloch et al. 
2013). 

Communication is the key link in all steps of 
embedding monitoring within an adaptive 
management framework.  

Scientists have been notoriously reluctant to translate 
scientific findings into clear and simple messages for 
the public, managers and policy makers, and to give 

clear and constructive advice on what actions should be 
taken. However, it is increasingly recognised that this 
kind of communication in equally, if not more, 
important to publishing results in scientific journals. 
Monitoring programs and resulting conservation 
actions are in need of political and public support, in 
order to generate the political will to find and secure 
funding for long-term monitoring programs 
(Lindenmayer et al. 2012a). 

Summary and conclusions 

Barriers to climate change adaptation 

Ignorance and misinformation of the general public is 
a major obstacle at all levels, leading to disinterest 
and inertia, and supporting a continued lack of 
political will. Monetary cost is the most common 
perceived barrier to adaptation actions. 

A number of obstacles exist in the implementation of 
actions to assist the adaptation of WTC Region 
biodiversity to climate change, including competition 
for land, physical limits of organisms, knowledge gaps, 
cost of actions, existing markets, and social perceptions 
(Boulter 2012; Garnett et al. 2013). We need to alter 
political and public perceptions that ecosystem 
conservation and restoration incur a net cost. If 
ecosystem services were given a monetary value, in 
almost all cases restoration would, in fact, result in a 
net benefit (De Groot et al. 2013). Furthermore, 
resource allocation algorithms were recently developed 
for incorporating climate change into the prioritisation 
of areas for conservation (Iwamura et al. 2010). This 
highlights the need for much more intensive and 
targeted education of the public about ecosystem 
services that support our quality of life, the long-term 
consequences of ecosystem change, and the long-term 
value of ecosystem adaptation. 

All conservation actions have costs associated with 
them, and adaptation to climate change will also incur 
costs. Projecting the ongoing costs of adaptation into 
the future is challenging, but the relative expenditure 
for different actions may be predictable based on 
current costs (Garnett et al. 2013). Generally, 
manipulative rehabilitation options (reforestation, 
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building or engineering structures, relocation species) 
are more expensive than passive options (protected 
areas, management of particular human actions). 

Conservation messages fail to capture the role of 
market mechanisms in persuading the public and 
governing bodies of the benefit and urgency of climate 
change adaptation.  

Burley et al. (2012) take a significant step to include 
financial incentives as ‘soft’ adaptation options (Table 
2.4). Ultimately, the use of these options would need to 
be tailored to specific locations, as human communities 
have slightly different drivers of environmental values 
and would therefore respond to different incentives. 
This is likely to be the case in the WTC Region, where 
communities range from urban centres (e.g. Cairns) to 
isolated and remote island communities (e.g. the Torres 
Strait).  

 The Productivity Commission’s report on barriers to 
adaptation further summarised the most important 
recommendations for effective adaptation 
(Productivity Commission 2012) 

 Governments at all levels should: 

– embed consideration of climate change in their 
risk management practices 

– ensure there is sufficient flexibility in regulatory 
and policy settings to allow households, 
businesses and communities to manage the risks 
of climate change 

 A range of policy reforms would help households, 
businesses and governments deal with current 
climate variability and extreme weather events. 
These reforms would also build adaptive capacity to 
respond to future climate impacts. Examples 
include: 

– reducing perverse incentives in tax, transfer and 
regulatory arrangements that impede the 
mobility of labour and capital 

– increasing the quality and availability of natural 
hazard mapping 

– clarifying the roles, responsibilities and legal 
liability of local governments, and improving 
their capacity to manage climate risks 

– reviewing emergency management 
arrangements in a public and consultative 
manner  

– retain all existing habitat 

– to better prepare for natural disasters and limit 
resultant losses 

– reducing tax and regulatory distortions in 
insurance markets 

 Further actions are required to reduce barriers to 
adaptation to future climate trends and to 
strengthen the climate change adaptation policy 
framework. These include: 

– designing more flexible land-use planning 
regulation 

– aligning land-use planning with building 
regulation 

– developing a work program to consider climate 
change in the building code 

– conducting a public review, sponsored by the 
Council of Australian Governments, to develop 
appropriate adaptive responses for existing 
settlements that face significant climate change 
risks 

 Some measures should not be implemented, as the 
costs would exceed the benefits: 

– Household insurance subsidies, or insurance 
regulations that impose net costs 

– Systematically reviewing all regulation to identify 
impediments to adaptation 

– Mandatory reporting of adaptation actions 

 Some individuals and communities are likely to face 
greater challenges in adapting than others, implying 
a role for the tax and transfer system. 

Concluding remarks 

Some of the over-arching messages pertaining to the 
adaptation of biodiversity to climate change are fairly 
consistent across the different ecosystem types, species 
and processes. Consistent messages include: 

 The threat of climate change is unlike many of the 
current threats to species and ecosystems; 
however, 
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 In many cases, management actions for climate 
change are similar to what is being conducted 
currently, or currently known to be important. 

 Managing for climate change will need to involve 
facilitating change, in particular, 

 Facilitating the movement of species and 
ecosystems as they track suitable climate and 
conditions. In addition: 

 “In situ” conservation – managing species in their 
habitat, or facilitating their dispersal, will be less 
expensive than “ex situ” conservation, which will be 
far more resource-intensive. 

Literature cited 
Aitken S.N., Whitlock M.C. (2013) Assisted gene flow to 

facilitate local adaptation to climate change. Annual 
Review of Ecology, Evolution, and Systematics 44, 
367-388. 

Aitken S.N., Yeaman S., Holliday J.A., Wang T., Curtis-
McLane S. (2008) Adaptation, migration or 
extirpation: climate change outcomes for tree 
populations. Evolutionary Applications 2008, 95-
111. 

Åizling A.t.L., Storch D., Å izlingovÃ¡ E., Reif J., Gaston 
K.J. (2009) Species abundance distribution results 
from a spatial analogy of central limit theorem. 
Proceedings of the National Academy of Sciences, -. 

Albins M.A., Hixon M.A. (2008) Invasive Indo-Pacific 
lionfish Pterois volitans reduce recruitment of 
Atlantic coral reef fishes. Marine Ecology Progress 
Series 367, 233-238. 

Alongi D.M. (2008) Mangrove forests: Resilience, 
protection from tsunamis, and responses to global 
climate change. Estuarine, Coastal and Shelf Science 
76, 1-13. 

Anderson A.S., Reside A.E., VanDerWal J.J., Shoo L.P., 
Pearson R.G., Williams S.E. (2012) Immigrants and 
refugees: the importance of dispersal in mediating 
biotic attrition under climate change. Global Change 
Biology 18, 2126-2134. 

Ashcroft M.B. (2010) Identifying refugia from climate 
change. Journal of Biogeography 37, 1407-1413. 

Ban N.C., Pressey R.L., Weeks S. (2012) Conservation 
objectives and sea-surface temperature anomalies 

in the Great Barrier Reef. Conservation Biology 26, 
799-809. 

Beger M., Linke S., Watts M. et al. (2010) Incorporating 
asymmetric connectivity into spatial decision 
making for conservation. Conservation Letters 3, 
359-368. 

Beger M., Sommer B., Harrison P.L., Smith S.D.A., 
Pandolfi J.M. (2014) Conserving potential coral reef 
refuges at high latitudes. Diversity and Distributions 
20, 245-257. 

Bekessy S.A., Wintle B.A. (2008) Using carbon 
investment to grow the biodiversity bank. 
Conservation Biology 22, 510-513. 

Bekessy S.A., Wintle B.A., Lindenmayer D.B. et al. (2010) 
The biodiversity bank cannot be a lending bank. 
Conservation Letters 3, 151-158. 

Bell J., Lovelock C.E. (2013) Insuring mangrove forests 
for their role in mitigating coastal erosion and storm 
-surge: An Australian case study. Wetlands 33, 279-
289. 

Bellard C., Bertelsmeier C., Leadley P., Thuiller W., 
Courchamp F. (2012) Impacts of climate change on 
the future of biodiversity. Ecology Letters 15, 365-
377. 

Berry M., Booth D.T., Limpus C.J. (2013) Artificial 
lighting and disrupted sea-finding behaviour in 
hatchling loggerhead turtles (Caretta caretta) on the 
Woongarra coast, south-east Queensland, Australia. 
Australian Journal of Zoology 61, 137-145. 

Bino G., Steinfeld C., Kingsford R.T. (2014) Maximizing 
colonial waterbirds’ breeding events using identified 
ecological thresholds and environmental flow 
management. Ecological Applications 24, 142-157. 

Birt P., Hall L.S., Smith G.C. (1997) Ecomorphology of 
the tongues of Australian Megachiroptera 
(Chiroptera: Pteropodidae). Australian Journal of 
Zoology 45, 369-384. 

Bongiorni L., Giovanelli D., Rinkevich B., Pusceddu A., 
Chou L.M., Danovaro R. (2011) First step in the 
restoration of a highly degraded coral reef 
(Singapore) by in situ coral intensive farming. 
Aquaculture 322-323, 191-200. 

Boulangeat I., Gravel D., Thuiller W. (2012) Accounting 
for dispersal and biotic interactions to disentangle 
the drivers of species distributions and their 
abundances. Ecology Letters 15, 584-593. 



 

 Adaptation Pathways and Opportunities for the Wet Tropics NRM Cluster region 

 
65 

Boulter S.L. (2012) An assessment of the vulnerability of 
Australian forests to the impacts of climate change: 
Synthesis. Contribution of Work Package 5 to the 
Forest Vulnerability Assessment. National Climate 
Change Adaptation Research Facility, Gold Coast. 

Braaker S., Ghazoul J., Obrist M.K., Moretti M. (in press) 
Habitat connectivity shapes urban arthropod 
communities - the key role of green roofs. Ecology. 

Bradshaw W.E., Holzapfel C.M. (2006) Evolutionary 
response to rapid climate change. Science 312, 
1477-1478. 

Breed M.F., Stead M.G., Ottewell K.M., Gardner M.G., 
Lowe A.J. (2013) Which provenance and where? 
Seed sourcing strategies for revegetation in a 
changing environment. Conservation Genetics 14, 1-
10. 

Brewer D., Heales D., Milton D. et al. (2006) The impact 
of turtle excluder devices and by-catch reduction 
devices on diverse tropical marine communities in 
Australia’s northern prawn trawl fishery. Fisheries 
Research 81, 176-188. 

Briggs J.C. (2009) Atlantic coral reefs: the 
transplantation alternative. Biological Invasions 11, 
1845-1854. 

Brodie J., Fabricius K., De'ath G., Okaji K. (2005) Are 
increased nutrient inputs responsible for more 
outbreaks of crown-of-thorns starfish? An appraisal 
of the evidence. Marine Pollution Bulletin 51, 266-
278. 

Burley J.G., McAllister R.R.J., Collins K.A., Lovelock C.E. 
(2012) Integration, synthesis and climate change 
adaptation: a narrative based on coastal wetlands at 
the regional scale. Regional Environmental Change 
12, 581-593. 

Bush A., Nipperess D., Turak E., Hughes L. (2012) 
Determining vulnerability of stream communities to 
climate change at the landscape scale. Freshwater 
Biology 57, 1689-1701. 

Butler J.R.A., Tawake A., Skewes T., Tawake L., McGrath 
V. (2012) Integrating traditional ecological 
knowledge and fisheries management in the Torres 
Strait, Australia: the catalytic role of turtles and 
dugong as cultural keystone species. Ecology and 
Society 17, 34-53. 

Campbell A., Kapos V., Scharlemann J.P.W. et al. (2009) 
Review of the literature on the links between 

biodiversity and climate change: Impacts, 
adaptation and mitigation. Technical Series No. 42, 
124 pages. Secretariat of the Convention on 
Biological Diversity, Montreal. 

Chazdon R.L. (2008) Beyond deforestation: restoring 
forests and ecosystem services on degraded lands. 
Science 320, 1458-1460. 

Cinner J.E., Folke C., Daw T., Hicks C.C. (2011) 
Responding to change: Using scenarios to 
understand how socioeconomic factors may 
influence amplifying or dampening exploitation 
feedbacks among Tanzanian fishers. Global 
Environmental Change 21, 7-12. 

Cochrane A., Daws M.I., Hay F.R. (2011) Seed-based 
approach for identifying flora at risk from climate 
warming. Austral Ecology 36, 923-935. 

Collier C.J., Waycott M., McKenzie L.J. (2012) Light 
thresholds derived from seagrass loss in the coastal 
zone of the northern Great Barrier Reef, Australia. 
Ecological Indicators 23, 211-219. 

Couper P.J., Hoskin C.J. (2008) Litho-refugia: the 
importance of rock landscapes for the long-term 
persistence of Australian rainforest fauna. 
Australian Zoologist 34, 554-560. 

Crowley G.M., Garnett S.T., Shephard S. (2004) 
Management guidelines for golden shouldered 
parrot conservation. Queensland Parks and Wildlife 
Service, Brisbane. 

Daniels R.C., White T.W., Chapman K.K. (1993) Sea-level 
rise: Destruction of threatened and endangered 
species habitat in South Carolina. Environmental 
Management 17, 373-385. 

Davies P.M. (2010) Climate change implications for river 
restoration in global biodiversity hotspots. 
Restoration Ecology 18, 261-268. 

Dawson T.P., Jackson S.T., House J.L., Prentice I.C., 
Mace G.M. (2011) Beyond predictions: biodiversity 
conservation in a changing climate. Science 332, 53-
58. 

De'ath G., Fabricius K. (2010) Water quality as a 
regional driver of coral biodiversity and macroalgae 
on the Great Barrier Reef. Ecological Applications 
20, 840-850. 

De'ath G., Fabricius K.E., Sweatman H., Poutinen M. 
(2012) The 27–year decline of coral cover on the 



 

 
 Adaptation Pathways and Opportunities for the Wet Tropics NRM Cluster region 

 
66 

Great Barrier Reef and its causes. Proceedings of the 
National Academy of Science USA pnas.1208909109. 

de Boer W.F. (2007) Seagrass–sediment interactions, 
positive feedbacks and critical thresholds for 
occurrence: a review. Hydrobiologia 591, 5-24. 

De Groot R.S., Blignaut J., Van der Ploeg S., Aronson J., 
Elmqvist T., Farley J. (2013) Benefits of investing in 
ecosystem restoration. Conservation Biology DOI: 
10.1111/cobi.12158. 

DECC NSW. (2007) Alps to Atherton Initiative: a 
continental-scale lifeline to engage people with 
nature: NSW business plan, 2007-2010. Department 
of Environment and Climate Change, Sydney. 

Department of Environment and Resource 
Management. (2010) Wet Tropics Natural Resource 
Management Region Back on Track Actions for 
Biodiversity. Department of Environment and 
Resource Management, Brisbane. 

Dewald J.R., Pike D.A. (2014) Geographical variation in 
hurricane impacts among sea turtle populations. 
Journal of Biogeography 41, 307-316. 

Dobbs K., Fernandes L., Slegers S. et al. (2008) 
Incorporating dugong habitats into the marine 
protected area design for the Great Barrier Reef 
Marine Park, Queensland, Australia. Ocean & 
Coastal Management 51, 368-375. 

Dobrowski S.Z. (2011) A climatic basis for microrefugia: 
the influence of terrain on climate. Global Change 
Biology 17, 1022-1035. 

Doerr V.A.J., Williams K.J., Drielsma M. et al. (2013) 
Designing landscapes for biodiversity under climate 
change: Final report. National Climate Change 
Adaptation Research Facility, Gold Coast. 

Duce S.J., Parnell K.E., Smithers S.G., McNamara K.E. 
(2010) A synthesis of climate change and coastal 
science to support adaptation in the communities of 
Torres Strait. Reef and Rainforest Research Centre, 
Cairns. 

Dunlop M., Hilbert D.W., Ferrier S. et al. (2010) The 
Implications of Climate Change for Biodiversity 
Conservation and the National Reserve System: 
Final Synthesis. A report prepared for the 
Department of Sustainability, Environment, Water, 
Population and Communities, and the Department 
of Climate Change and Energy Efficiency. CSIRO 
Climate Adaptation Flagship, Canberra. 

Dunlop M., Hilbert D.W., Ferrier S. et al. (2012) The 
Implications of Climate Change for Biodiversity 
Conservation and the National Reserve System: 
Final Synthesis. A report prepared for the 
Department of Sustainability, Environment, Water, 
Population and Communities, and the Department 
of Climate Change and Energy Efficiency. CSIRO 
Climate Adaptation Flagship, Canberra. 

Eby P., Law B. (2008) Ranking the feeding habitats of 
grey headed flying-foxes for conservation 
management. Department of Environment, Water, 
Heritage and the Arts, Canberra. 

Eiswerth M.E., Haney J.C. (2001) Maximizing conserved 
biodiversity: why ecosystem indicators and 
thresholds matter. Ecological Economics 38, 259-
274. 

EPBC. (1999) Environmental Protection and Biodiversity 
Conservation Act. Department of the Environment, 
Water Heritage and the Arts  

Eslami-Andargoli L., Dale P., Sipe N. (2013) Does spatial 
scale affect the pattern of mangrove change under 
different rainfall regimes? An example in southeast 
Queensland, Australia. Austral Ecology 38, 208-218. 

Fensham R.J. (2012) Fire regimes in in Australian 
tropical savanna: perspectives paradigms and 
paradoxes. pp. 173-193 in R.A. Bradstock, A.M. Gill, 
R.J. Williams editors. Flammable Australia: fire 
regimes, biodiversity and ecosystems in a changing 
world. CSIRO Publishing, Melbourne. 

Field S.A., O'Connor P.J., Tyre A.J., Possingham H.P. 
(2007) Making monitoring meaningful. Austral 
Ecology 32, 485-491. 

Fine M., Gildor H., Genin A. (2013) A coral reef refuge in 
the Red Sea. Global Change Biology 19, 3640-3647. 

Fish M.R., Cote I.M., Gill J.A., Jones A.P., Renshoff S., 
Watkinson A.R. (2005) Predicting the impact of sea-
level rise on Caribbean sea turtle nesting habitat. 
Conservation Biology 19, 482-491. 

Fish M.R., Cote I.M., Horrocks J.A., Mulligan B., 
Watkinson A.R., Jones A.P. (2008) Construction 
setback regulations and sea-level rise: Mitigating sea 
turtle nesting beach loss. Ocean & Coastal 
Management 51, 330-341. 

Flint M., Patterson-Kane J.C., Limpus C.J., Mills P.C. 
(2010) Health surveillance of stranded green turtles 
in southern Queensland, Australia (2006–2009): An 



 

 Adaptation Pathways and Opportunities for the Wet Tropics NRM Cluster region 

 
67 

epidemiological analysis of causes of disease and 
mortality. EcoHealth 7, 131-145. 

Fuentes M., Hamann M., Limpus C.J. (2010a) Past, 
current and future thermal profiles of green turtle 
nesting grounds: Implications from climate change. 
Journal of Experimental Marine Biology and Ecology 
383, 56-64. 

Fuentes M.M.P.B., Abbs D. (2010) Effects of projected 
changes in tropical cyclone frequency on sea turtles. 
Marine Ecology Progress Series 412, 283-292. 

Fuentes M.M.P.B., Bateman B.L., Hamann M. (2011) 
Relationship between tropical cyclones and the 
distribution of sea turtle nesting grounds. Journal of 
Biogeography 38, 1886-1896. 

Fuentes M.M.P.B., Limpus C.J., Hamann M., Dawson J. 
(2010b) Potential impacts of projected sea-level rise 
on sea turtle rookeries. Aquatic Conservation: 
Marine and Freshwater Ecosystems 20, 132-139. 

Gaither M.R., Aeby G.M.V., Meguro Y.-I. et al. (2013) An 
invasive fish and the time-lagged spread of its 
parasite across the Hawaiian Archipelago. PLoS ONE 
8, e56940. 

Garcon J.S., Grech A., Moloney J., Hamann M. (2010) 
Relative Exposure Index: an important factor in sea 
turtle nesting distribution. Aquatic Conservation: 
Marine and Freshwater Ecosystems 20, 140-149. 

Garnett S., Franklin D., Ehmke G. et al. (2013) Climate 
change adaptation strategies for Australian birds. 
National Climate Change Adaptation Research 
Facility, Gold Coast. 

Gerber L.R., Beger M., McCarthy M.A., Possingham H.P. 
(2005) A theory for optimal monitoring of marine 
reserves. Ecology Letters 8, 829-837. 

Ghedini G., Russell B.D., Connell S.D. (2013) Managing 
local coastal stressors to reduce the ecological 
effects of ocean acidification and warming. Water 5, 
1653-1661. 

Gillespie A. (2005) The dugong action plan for the South 
Pacific: An evaluation based on the need for 
international and regional conservation of Sirenians. 
Ocean Development & International Law 36, 135-
158. 

Gillson L., Dawson T.P., Jack S., McGeoch M.A. (2013) 
Accommodating climate change contingencies in 
conservation strategy. Trends in ecology & evolution 
(Personal edition) 28, 135-142. 

Gilman E.L., Ellison J., Duke N.C., Field C. (2008) Threats 
to mangroves from climate change and adaptation 
options: A review. Aquatic Botany 89, 237-250. 

Gjertsen H., Squires D., Dutton P.H., Eguchi T. (2014) 
Cost-effectiveness of alternative conservation 
strategies with application to the Pacific leatherback 
turtle. Conservation Biology 28, 140-149. 

Goosem M. (2004) Linear infrastructure in the tropical 
rainforests of far noth Queensland: mitigating 
impacts on fauna of roads and powerline clearings. 
pp. 418-434 in D. Lunney editor. Conservation of 
Australia’s Forest Fauna (second edition). Royal 
Zoological Society of New South Wales, Mossman. 

Graham N.A.J., Bellwood D.R., Cinner J.E., Hughes T.P., 
Norström A.V., Nyström M. (2013) Managing 
resilience to reverse phase shifts in coral reefs. 
Frontiers in Ecology and the Environment 11, 541-
548. 

Grech A., Bos M., Brodie J. et al. (2013) Guiding 
principles for the improved governance of port and 
shipping impacts in the Great Barrier Reef. Marine 
Pollution Bulletin 75, 8-20. 

Grech A., Coles R. (2010) An ecosystem-scale predictive 
model of coastal seagrass distribution. Aquatic 
Conservation: Marine and Freshwater Ecosystems 
20, 437-444. 

Grech A., Coles R., Marsh H. (2011) A broad-scale 
assessment of the risk to coastal seagrasses from 
cumulative threats. Marine Policy 35, 560-567. 

Grech A., Marsh H. (2008) Rapid assessment of risks to 
a mobile marine mammal in an ecosystem-scale 
marine protected area. Conservation Biology 22, 
711-720. 

Grech A., Marsh H., Coles R. (2008) A spatial assessment 
of the risk to a mobile marine mammal from by-
catch. Aquatic Conservation: Marine and Freshwater 
Ecosystems 18, 1127-1139. 

Green D., Alexander L., McInnes K., Church J., Nicholls 
N., White N. (2009) An assessment of climate 
change impacts and adaptation for the Torres Strait 
Islands, Australia. Climatic Change DOI 
10.1007/s10584-009-9756-2. 

Griffin D.B., Murphy S.R., Frick M.G. et al. (2013) 
Foraging habitats and migration corridors utilized by 
a recovering subpopulation of adult female 



 

 
 Adaptation Pathways and Opportunities for the Wet Tropics NRM Cluster region 

 
68 

loggerhead sea turtles: implications for 
conservation. Marine Biology 160, 3071-3086. 

Groffman P.M., Baron J.S., Blett T. et al. (2006) 
Ecological thresholds: The key to successful 
environmental management or an important 
concept with no practical application? Ecosystems 9, 
1-13. 

Hallegatte S. (2009) Strategies to adapt to an uncertain 
climate change. Global Environmental Change 19, 
240-247. 

Hampe A., Petit R.J. (2005) Conserving biodiversity 
under climate change: the rear edge matters. 
Ecology Letters 8, 461-467. 

Hannah L., Midgley G.F., Lovejoy T. et al. (2002a) 
Conservation of biodiversity in a changing climate. 
Conservation Biology 16, 264-268. 

Hannah L., Midgley G.F., Millar D. (2002b) Climate 
change-integrated conservation strategies. Global 
Ecology & Biogeography 11, 485-495. 

Harris S., Arnall S., Byrne M. et al. (2013) Whose 
backyard? Some precautions in choosing recipient 
sites for assisted colonisation of Australian plants 
and animals. Ecological Management & Restoration 
14, 106-111. 

Hedwall P.-O., Brunet J., Nordin A., Bergh J. (2013) 
Changes in the abundance of keystone forest floor 
species in response to changes of forest structure. 
Journal of Vegetation Science 24, 296-306. 

Hellmann J.J., Byers J.E., Bierwagen B.G., Dukes J.S. 
(2008) Five potential consequences of climate 
change for invasive species. Conservation Biology 
22, 534-543. 

Hewitt N., Klenk N., Smith A.L. et al. (2011) Taking stock 
of the assisted migration debate. Biol Conserv 144, 
2560-2572. 

Hilbert D.W., Fletcher C.S. (2012) Using artificial neural 
networks to assess the impacts of future climate 
change on ecoregions and major vegetation groups 
in Australia. CSIRO Climate Adaptation Flagship 
Working Paper No. 13H, Hobart. 

Hilbert D.W., Hill R., Moran C. et al. (2014) Climate 
change issues and impacts in the Wet Tropics NRM 
Cluster region. James Cook University, Cairns. 

Hodgson A.J., Marsh H., Delean S., Marcus L. (2008) Is 
attempting to change marinemammal behaviour a 

generic solution to the by-catch problem? A dugong 
case study. Animal Conservation 10, 263-273. 

Hodgson J.A., Moilanen A., Wintle B.A., Thomas C.D. 
(2011) Habitat area, quality and connectivity: 
striking the balance for efficient conservation. 
Journal of Applied Ecology 48, 148-152. 

Hodgson J.A., Thomas C.D., Wintle B.A., Moilanen A. 
(2009) Climate change, connectivity and 
conservation decision making: back to basics. 
Journal of Applied Ecology 46, 964-969. 

Hoegh-Guldberg O., Hughes L., McIntyre S. et al. (2008) 
Assisted colonization and rapid climate change. 
Science 321, 345-346. 

Honarvar S., Spotila J.R., O’Connor M.P. (2011) 
Microbial community structure in sand on two olive 
ridley arribada nesting beaches, Playa La Flor, 
Nicaragua and Playa Nancite, Costa Rica. Journal of 
Experimental Marine Biology and Ecology 409, 339-
344. 

Howden S.M., Soussana J.F., Tubiello F.N., Chhetri N., 
Dunlop M., Meinke H. (2007) Adapting agriculture to 
climate change. 104, 19691–6. Proceedings of the 
National Academy of Sciences of the United States 
of America 104, 19691–19696. 

Hughes L. (2003) Climate change and Australia: trends, 
projections and impacts. Austral Ecology 28, 423-
443. 

Hughes L., Downey P., Englert Duursma D. et al. (2013) 
Prioritising naturalised plant species for threat 
assessment: Developing a decision tool for 
managers. National Climate Change Adaptation 
Research Facility, Gold Coast. 

Hughes T.P., Graham N.A.J., Jackson J.B.C., Mumby P.J., 
Steneck R.S. (2010) Rising to the challenge of 
sustaining coral reef resilience. Trends in Ecology 
and Evolution 25, 633-642. 

Invasive Species Council. (2011) Barriers to effective 
climate change adaptation: invasive species and 
biodiversity conservation. Invasive Species Council, 
Fairfield, Victoria. 

IPCC. (2013) Climate Change 2013: The Physical Science 
Basis. p. 1535 pp. in T.F. Stocker, D. Qin et al. 
editors. Contribution of Working Group I to the Fifth 
Assessment Report of the Intergovernmental Panel 
on Climate Change. Cambridge University Press, 
Cambridge, United Kingdom and New York, NY, USA. 



 

 Adaptation Pathways and Opportunities for the Wet Tropics NRM Cluster region 

 
69 

Isaac J.L., VanDerWal J., Johnson C.N., Williams S.E. 
(2009) Resistance and resilience: quantifying 
relative extinction risk in a diverse assemblage of 
Australian tropical rainforest vertebrates. Diversity 
and Distributions 15, 280-288. 

Iwamura T., Wilson K.A., Venter O., Possingham H.P. 
(2010) A climatic stability approach to prioritizing 
global conservation investments. PLoS ONE 5, 
e15103. 

James C., VanDerWal J., Capon S. et al. (2013) 
Identifying climate refuges for freshwater 
biodiversity across Australia. National Climate 
Change Adaptation Research Facility, Gold Coast. 

Johnson P., Nolan B., Moore B. (1993) The use of 
wildlife reflectors as a means of reducing Kangaroo 
road deaths - the Proserpine Rock-wallaby 
experience. Internal Report. Queensland 
Department of Environment and Heritage, Brisbane. 

Kanowski J., Catterall C.P., Proctor H., Reis T., Tucker 
N.I.J., Wardell-Johnson G.W. (2005) Rainforest 
timber plantations and animal biodiversity in 
tropical and subtropical Australia. pp. 183-205 in 
P.D. Erskine, D. Lamb, M. Bristow editors. 
Reforestation in the Tropics and Subtropics of 
Australia Using Rainforest Tree Species. RIRDC, 
Canberra and Rainforest CRC, Cairns. 

Kanowski J., Catterall C.P., Wardell-Johnson G.W., 
Proctor H., Reis T. (2003) Development of forest 
structure on cleared rainforest land in eastern 
Australia under different styles of reforestation. 
Forest Ecology and Management 183, 265-280. 

Katselidis K.A., Schofield G., Stamou G., Dimopoulos P., 
Pantis J.D. (2014) Employing sea-level rise scenarios 
to strategically select sea turtle nesting habitat 
important for long-term management at a 
temperate breeding area. Journal of Experimental 
Marine Biology and Ecology 450, 47-54. 

Keppel G., Van Niel K.P., Wardell-Johnson G.W. et al. 
(2012) Refugia: identifying and understanding safe 
havens for biodiversity under climate change. Global 
Ecology & Biogeography 21, 393-404. 

Keppel G., Wardell-Johnson G.W. (2012) Refugia: keys 
to climate change management. Global Change 
Biology 18, 2389-2391. 

Kwan D., Marsh H., Delean S. (2006) Factors influencing 
the sustainability of customary dugong hunting by a 

remote indigenous community. Environmental 
Conservation 33, 164-171. 

Lamarre-DeJesus A.S., Griffin C.R. (2013) Use of 
habanero pepper powder to reduce depredation of 
loggerhead sea turtle nests. Chelonian Conservation 
and Biology 12, 262-267. 

Lamb D., Erskine P.D., Parrotta J.A. (2005) Restoration 
of degraded tropical forest landscapes. Science 310, 
1628-1632. 

Latch P. (2007) National recovery plan for the southern 
cassowary Casuarius casuarius johnsonii. Report to 
Department of the Environment, Water, Heritage 
and the Arts, Canberra. 

Laurance W.F., Dell B., Turton S.M. et al. (2011) The 10 
Australian ecosystems most vulnerable to tipping 
points. Biological Conservation 144, 1472-1480. 

Lawler I.R., Foley W.J., Woodrow I.E., Cork S.J. (1997) 
The effects of elevated CO2 atmospheres on the 
nutritional quality of Eucalyptus foliage and its 
interaction with soil nutrient and light availability. 
Oecologia 109, 59-68. 

Liedloff A.C., Smith C.S. (2010) Predicting a ‘tree 
change’ in Australia’s tropical savannas: combining 
different types of models to understand complex 
ecosystem behavior. Ecological Modelling 221, 
2565–2575. 

Linden B., Rinkevich B. (2011) Creating stocks of young 
colonies from brooding coral larvae, amenable to 
active reef restoration. Journal of Experimental 
Marine Biology and Ecology 398, 40-46. 

Lindenmayer D.B., Gibbons P., Bourke M. et al. (2012a) 
Improving biodiversity monitoring. Austral Ecology 
37, 285-294. 

Lindenmayer D.B., Laurance W.F., Franklin J.F. (2012b) 
Global decline in large old trees. Science 338, 1305-
1306. 

Low T. (2011) Climate change and terrestrial 
biodiversity in Queensland. Department of 
Environment and Resource Management, 
Queensland Government, Brisbane. 

Lunt I.D., Byrne M., Hellman J.J. et al. (2013) Using 
assisted colonisation to conserve biodiversity and 
restore ecosystem function under climate change. 
Biol Conserv 157, 172-177. 

Mackey B., Watson J., Worboys G.L. (2010) Connectivity 
conservation and the Great Eastern Ranges corridor, 



 

 
 Adaptation Pathways and Opportunities for the Wet Tropics NRM Cluster region 

 
70 

an independent report to the Interstate Agency 
Working Group (Alps to Atherton Connectivity 
Conservation Working Group) convened under the 
Environment Heritage and Protection 
Council/Natural Resource Management Ministerial 
Council. ANU Enterprises Pty Ltd, Canberra. 

Magris R.A., Pressey R.L., Weeks R., Ban N.C. (2014) 
Integrating connectivity and climate change into 
marine conservation planning. Biological 
Conservation 170, 207-221. 

Manning A., Shorthouse D.J., Stein J.L., Stein J.A. (2010) 
Ecological connectivity for climate change in the ACT 
and surrounding region. Technical Report 21. Fenner 
School of Environment and Society, Australian 
National University, Canberra. 

Margules C.R., Pressey R.L. (2000) Systematic 
conservation planning. Nature 405, 243-253. 

Markus N., Hall L. (2004) Foraging behaviour of the 
black flying-fox (Pteropus alecto) in the urban 
landscape of Brisbane, Queensland. Wildlife 
Research 31, 345-355. 

Marsh H., Kwan D. (2008) Temporal variability in the life 
history and reproductive biology of female dugongs 
in Torres Strait: The likely role of sea grass dieback. 
Continental Shelf Research 28, 2152-2159. 

McClanahan T.R., Maina J.M., Muthiga N.A. (2011) 
Associations between climate stress and coral reef 
diversity in the western Indian Ocean. Global 
Change Biology 17, 2023-2032. 

McKeon G.M., Stone G.S., Syktus J.I. et al. (2009) 
Climate change impacts on Australia’s rangeland 
livestock carrying capacity: A review of challenges. 
p. 69. for Land & Water Australia Senior Research 
Fellowship (QNR46). 

McLeod E., Salm R., Green A., Almany J. (2009) 
Designing marine protected area networks to 
address the impacts of climate change. Frontiers in 
Ecology and the Environment 7, 362-370. 

Moilanen A., Meller L., Leppanen J., Pouzols F.M., 
Arponen A., Kujala H. (2012) Zonation: Spatial 
conservation planning framework and software. 
Version 3.1 User manual: 
http://www/helsinki.fi/bioscience/consplan. 

Moritz C., Agudo R. (2013a) The future of species under 
climate change: resilience or decline? Science 341, 
504-508. 

Moritz C., Agudo R. (2013b) The future of species under 
climate change: resilience or decline? Science 341, 
504-508. 

Moritz C., Hoskin C., Graham C.H. et al. (2005) Historical 
biogeography, diversity and conservation of 
Australia’s tropical rainforest herpetofauna. pp. 
243-264 in A. Purvis, J.L. Gittleman, T. Brooks 
editors. Phylogeny and Conservation. Cambridge 
University Press, Cambridge. 

Moritz C., Langham G., Kearney M., Krockenberger A., 
VanDerWal J., Williams S. (2012) Integrating 
phylogeography and physiology reveals divergence 
of thermal traits between central and periheral 
lineages of tropical rainforest lizards. Philosophical 
Transactions of the Royal Society of London B: 
Biological Sciences 367, 1680-1687. 

Moritz C., Richardson K.S., Simon F. et al. (2001) 
Biogeographical concordance and efficiency of 
taxon indicators for establishing conservation 
priority in a tropical rainforest biota. Proceedings: 
Biological Sciences 268, 1875-1881. 

Muko S., Iwasa Y. (2011) Long-term effect of coral 
transplantation: Restoration goals and the choice of 
species. Journal of Theoretical Biology 280, 127-138. 

Murphy H., Liedloff A., Williams R.J., Williams K.J., 
Dunlop M. (2012) Queensland’s biodiversity under 
climate change: terrestrial ecosystems. CSIRO 
Climate Adaptation Flagship Working Paper No. 12C. 
CSIRO Ecosystem Sciences, Canberra. 

National Biodiversity Strategy Review Task Group. 
(2009) Australia’s Biodiversity Conservation Strategy 
2010-2020. Consultation Draft. Australian 
Government, Department of the Environment, 
Water, Heritage and the Arts, Canberra. 

Nelson E., Polasky S., Lewis D.J. et al. (2008) Efficiency 
of incentives to jointly increase carbon 
sequestration and species conservation on a 
landscape. Proceedings of the National Academy of 
Sciences 105, 9471-9476. 

Nicholls R.J., Tol S.J. (2006) Impacts and responses to 
sea-level rise: A global analysis of the SRES scenarios 
over the twenty-first century. Philosophical 
Transactions: Mathematical, Physical and 
Engineering Sciences 364, 1073-1095. 

http://www/helsinki.fi/bioscience/consplan


 

 Adaptation Pathways and Opportunities for the Wet Tropics NRM Cluster region 

 
71 

Omori M. (2011) Degradation and restoration of coral 
reefs: Experience in Okinawa, Japan. Marine Biology 
Research 7, 3-12. 

Oritz J.C., Gonzalez-Rivero M., Mumby P.J. (2014) An 
ecosystem-level perspective on the host and 
symbiont traits needed to mitigate climate change 
impacts on Caribbean coral reefs. Ecosystems 17, 1-
13. 

Ovaskainen O. (2002) Long-term persistence of species 
and the SLOSS problem. Journal of Theoretical 
Biology 218, 419-433. 

Pachauri R.K., Reisinger A. (2007) Climate Change 2007 
Synthesis Report. Contribution of Working Groups I, 
II and III to the Fourth Assessment Report of the 
intergovernmental Panel on Climate Change. IPCC, 
Geneva. 

Pandolfi J.M., Connolly S.R., Marshall D.J., Cohen A.L. 
(2011) Projecting coral reef futures under global 
warming and ocean acidification. Science 333, 418-
422. 

Park K. (2004) Assessment and management of invasive 
alien predators. Ecology and Society 9, 12. 

Parris K., Hazell D. (2005) Biotic effects of climate 
change in urban environments: The case of the grey-
headed flying-fox (Pteropus poliocephalus) in 
Melbourne, Australia. Biological Conservation 124, 
267-276. 

Parsons J.G., Cairns A., Johnson C.N., Robson S.K.A., 
Shilton L.A., Westcott D.A. (2006) Dietary variation 
in spectacled flying foxes (Pteropus conspicillatus) of 
the Australian Wet Tropics. Australian Journal of 
Zoology 54, 417-28. Australian Journal of Zoology 
54, 417-428. 

Parsons J.G., Van der Wal J., Robson S.K.A., Shilton L.A. 
(2010) The implications of sympatry in the 
spectacled and grey headed flying-fox, Pteropus 
conspicillatus and P. poliocephalus (Chiroptera: 
Pteropodidae). Acta Chiropterologica 12, 301-309. 

Pfaller J.B., Limpus C.J., Bjorndal K.A. (2008) Nest-site 
selection in individual loggerhead turtles and 
consequences for doomed-egg relocation. 
Conservation Biology 23, 72-80. 

Pike D.A. (2014) Forecasting the viability of sea turtle 
eggs in a warming world. Global Change Biology 20, 
7-15. 

Pollnac R., Christie P., Cinner J.E. et al. (2010) Marine 
reserves as linked social–ecological systems. 
Proceedings of the National Academy of Sciences of 
the United States of America 43, 18262-18265. 

Pratchett M.S., Berumen M.L. (2008) Interspecific 
variation in distributions and diets of coral reef 
butterflyfishes (Teleostei: Chaetodontidae). Journal 
of Fish Biology 73, 1730-1747. 

Productivity Commission. (2012) Barriers to effective 
climate change adaptation. Report No. 59, Final 
Inquiry Report, Canberra. 

Puschendorf R., Hoskin C.J., Cashins S.D. et al. (2011) 
Environmental refuge from disease-driven 
amphibian extinction. Conservation Biology. 
Conservation Biology 25, 956-964. 

Rau G.H., McLeod E., Hoegh-Guldberg O. (2012) The 
need for new ocean conservation strategies in a 
high-carbon dioxide world. Nature Climate Change 
2, 720-724. 

Read T., Booth D.T., Limpus C.J. (2012) Effect of nest 
temperature on hatchling phenotype of loggerhead 
turtles (Caretta caretta) from two South Pacific 
rookeries, Mon Repos and La Roche Percée. 
Australian Journal of Zoology 60, 402-411. 

Reardon-Smith K., Stone R.C., Le Brocque A.F. (2012) 
Managing pest species under climate change: risks 
and opportunities. Presentation at Queensland pest 
animal symposium proceedings. 

Reef Water Quality Protection Plan Secretariat. (2013) 
Great Barrier Reef Report Card 2011 - Reef Water 
Quality Protection Plan. Great Barrier Reef Marine 
Park Authority, Townsville. 

Regan H.M., Ben-Haim Y., Langford B. et al. (2005) 
Robust decision-making under severe uncertainty 
for conservation management. Ecological 
Applications 15, 1471-1477. 

Reside A.E. (2011) Assessing Climate Change 
Vulnerability: Novel methods for understanding 
potential impacts on Australian Tropical Savanna 
birds. James Cook University, Townsville. 

Reside A.E., VanDerWal J., Kutt A.S. (2012) Projected 
changes in distributions of Australian tropical 
savanna birds under climate change using three 
dispersal scenarios. Ecology and Evolution 2, 705-
718. 



 

 
 Adaptation Pathways and Opportunities for the Wet Tropics NRM Cluster region 

 
72 

Reside A.E., VanDerWal J., Phillips B.L. et al. (2013) 
Climate change refugia for terrestrial biodiversity: 
defining areas that promote species persistence and 
ecosystem resilience in the face of global climate 
change. p. 216. National Climate Change Adaptation 
Research Facility, Gold Coast,. 

Reside A.E., Welbergen J.A., Phillips B.L. et al. (2014) 
Characteristics of climate change refugia for 
Australian biodiversity. Austral Ecology In Press. 

Richardson D.M., Hellmann J.J., McLachlan J.S. et al. 
(2009) Multidimensional evaluation of managed 
relocation. Proceedings of the National Academy of 
Sciences of the United States of America 106, 9721-
9724. 

Rinkevich B. (2008) Management of coral reefs: We 
have gone wrong when neglecting active reef 
restoration. Marine Pollution Bulletin 56, 1821-
1824. 

Roberts B.J., Catterall C.P., Eby P., Kanowski J. (2012) 
Latitudinal range shifts in Australian flying-foxes: A 
re-evaluation. Austral Ecology 37, 12-22. 

Roberts B.J., Eby P., Catterall C.P., Kanowski J., Bennett 
G. (2011) The outcomes and costs of relocating 
flying-fox camps: insights from the case of Maclean, 
Australia. Biology and Conservation of Australasian 
Bats, 277-287. 

Rodrigues A.S.L., AkÇAkaya H.R., Andelman S.J. et al. 
(2004) Global gap analysis: priority regions for 
expanding the global protected-area network. 
BioScience 54, 1092-1100. 

Rogers K., Saintilan N., Copeland C. (2014) Managed 
retreat of saline coastal wetlands: Challenges and 
opportunities identified from the Hunter River 
Estuary, Australia. Estuaries and Coasts 37, 67-78. 

Roiko A., Mangoyana R.B., McFallan S., Carter R.W., 
Oliver J., Smith T.F. (2012) Socio-economic trends 
and climate change adaptation: The case of South 
East Queensland. Australasian Journal of 
Environmental Management 19, 35-50. 

Saintilan N., Rogers K. (2013) The significance and 
vulnerability of Australian saltmarshes: implications 
for management in a changing climate. Marine and 
Freshwater Research 64, 66-79. 

Saintilan N., Wilson N.C., Rogers K., Rajkaran A., Krauss 
K.W. (2014) Mangrove expansion and salt marsh 

decline at mangrove poleward limits. Global Change 
Biology 20, 147-157. 

Schuyler Q., Herdesty B.D., Wilcox C., Townsend K. 
(2013) Global analysis of anthropogenic debris 
ingestion by sea turtles. Conservation Biology 28, 
129-139. 

Shoo L.P., Hoffmann A.A., Garnett S. et al. (2013) 
Making decisions to conserve species under climate 
change. Climate Change 119, 239-246. 

Shoo L.P., Storlie C., Vanderwal J., Little J., Williams S.E. 
(2011) Targeted protection and restoration to 
conserve tropical biodiversity in a warming world. 
Global Change Biology 17, 186-193. 

Shoo L.P., Williams S.E., Hero J.-M. (2005) Climate 
warming and the rainforest birds of the Australian 
Wet Tropics: Using abundance data as a sensitive 
predictor of change in total population size. 
Biological Conservation 125, 335-343. 

Soares M.L.G. (2009) A conceptual model for the 
responses of mangrove forests to sea level rise. 
Journal of Coastal Research 56, 267-271. 

Spillman C.M., Alves O., Hudson D.A. (2013) Predicting 
thermal stress for coral bleaching in the Great 
Barrier Reef using a coupled ocean–atmosphere 
seasonal forecast model. International Journal of 
Climatology 33, 1001-1014. 

Stoeckl N., Stanley O. (2007) Key Industries in 
Australia’s Tropical Savanna. Australasian Journal of 
Regional Studies 13, 255 - 286. 

Storlie C.J., Phillips B.L., VanDerWal J.J., Williams S.E. 
(2013) Improved spatial estimates of climate predict 
patchier species distributions. Diversity and 
Distributions 19, 1106-1113. 

Suding K.N. (2011) Toward an era of restoration in 
ecology: Successes, failures, and opportunities 
ahead. Annual Review of Ecology and Systematics 
42, 465-487. 

Sweatman H., Delean S., Syms C. (2011) Assessing loss 
of coral cover on Australia’s Great Barrier Reef over 
two decades, with implications for longer-term 
trends. Coral Reefs 30, 521-531. 

Thiriet D. (2005) The relocation of flying fox colonies in 
Queensland. Environmental and Planning Law 
Journal 22, 231-239. 

Thiriet D. (2010) Flying fox conservation laws, policies 
and practices in Australia - a case study in 



 

 Adaptation Pathways and Opportunities for the Wet Tropics NRM Cluster region 

 
73 

conserving unpopular species. Australasian Journal 
of Natural Resources Law and Policy 13, 161-194. 

Thomas C.D. (2011) Translocation of species, climate 
change, and the end of trying to recreate past 
ecological communities. Trends in Ecology & 
Evolution 26, 216-221. 

Thomas C.D., Anderson B.J., Moilanen A. et al. (2012) 
Reconciling biodiversity and carbon conservation. 
Ecology Letters, Early online DOI: 
10.1111/ele.12054. 

Tidemann C.R., Nelson J.E. (2004) Long-distance 
movements of the grey-headed flying fox (Pteropus 
poliocephalus). Journal of Zoology 263, 141-146. 

Travis J.M.J. (2003) Climate change and habitat 
destruction: a deadly anthropogenic cocktail. 
Proceedings of the Royal Society of London B: 
Biological Sciences 270, 467-473. 

Tulloch A.I.T., Possingham H.P., Joseph L.N., Szabo J., 
Martin T.G. (2013) Realising the full potential of 
citizen science monitoring programs. Biological 
Conservation 165, 128-138. 

Tzedakis P.C., Lawson I.T., Frogley M.R., Hewitt G.M., 
Preece R.C. (2002) Buffered tree population changes 
in a Quaternary refugium: evolutionary implications. 
Science 297, 2044-2047. 

Valentine L.E., Schwarzkopf L., Johnson C.N., Grice A.C. 
(2007) Burning season influences the response of 
bird assemblages to fire in tropical savannas. 
Biological Conservation 137, 90-101. 

Van der Putten W.H., Macel M., Visser M. (2010) 
Predicting species distribution and abundance 
reponses to climate change: why it is essential to 
include biotic interactions across tropicic levels. 
Philosophical Transactions of the Royal Society, 
Series B, Biological Sciences 365, 2025-2034. 

van der Ree R., McDonnell M.J., Temby I., Nelson J., 
Whittingham E. (2006) The establishment and 
dynamics of a recently established urban camp of 
flying foxes (Pteropus poliocephalus) outside their 
geographic range. Journal of Zoology 268, 177-185. 

Van Ittersum M.K. (1998) Exploratory land use studies 
and their role in strategic policy making. Agricultural 
Systems 58, 309-330. 

Villanueva R.D., Edwards A.J., Bell J.D. (2010) 
Enhancement of grazing gastropod populations as a 
coral reef restoration tool: Predation effects and 

related applied implications. Restoration Ecology 18, 
803-809. 

Watson J.E.M., Evans M.C., Carwardine J. et al. (2011) 
The capacity of Australia’s protected-area system to 
represent threatened species. Conservation Biology 
25, 324-332. 

Waycott M., Duarte C.M., Carruthers T.J.B. et al. (2009) 
Accelerating loss of seagrasses across the globe 
threatens coastal ecosystems. Proceedings of the 
National Academy of Sciences of the United States 
of America 106, 12377-12381. 

Webb N.J., Tidemann C.R. (1996) Mobility of Australian 
flying-foxes, Pteropus spp (Megachiroptera): 
Evidence from genetic variation. Proceedings of the 
Royal Society B-Biological Sciences 263, 497-502. 

Weeks A.R., Sgro C.M., Young A.G. et al. (2011) 
Assessing the benefits and risks of translocations in 
changing environments: a genetic perspective. 
Evolutionary Applications 4, 709-725. 

Weis V.M. (2010) The susceptibility and resilience of 
corals to thermal stress: adaptation, acclimatization 
or both? Molecular Ecology 19, 1515-1517. 

Welbergen J.A., Klose S.M., Markus N., Eby P. (2008) 
Climate change and the effects of temperature 
extremes on Australian flying-foxes. Proceedings of 
the Royal Society B-Biological Sciences 265, 419-425. 

Werners S.E., Pfenninger S., van Slobbe E., Haasnoot 
M., Kwakkel J.H., Swart R.J. (2013) Thresholds, 
tipping and turning points for sustainability under 
climate change. Current Opinion in Environmental 
Sustainability 5, 334-340. 

Whiting S.D. (2008) Movements and distribution of 
dugongs (Dugong dugon) in a macro-tidal 
environment in northern Australia. Australian 
Journal of Zoology 56, 215-222. 

Whytlaw P.A., Edwards W., Congdon B.C. (2013) Marine 
turtle nest depredation by feral pigs (Sus scrofa) on 
the Western Cape York Peninsula, Australia: 
implications for management. Wildlife Research 40, 
377-384. 

Wilcox C., Hardesty B.D., Sharples R., Griffin D.A., 
Lawson T.J., Gunn R. (2012) Ghostnet impacts on 
globally threatened turtles, a spatial risk analysis for 
northern Australia. Conservation Letters 6, 247-254. 

Williams N., McDonnell M., Phelan G., Keim L., Van der 
Ree R. (2006a) Range expansion due to 



 

 
 Adaptation Pathways and Opportunities for the Wet Tropics NRM Cluster region 

 
74 

urbanization: Increased food resources attract Grey-
headed Flying-foxes (Pteropus poliocephalus) to 
Melbourne. Austral Ecology 31, 190-198. 

Williams P., Hannah L., Andelman S. et al. (2005a) 
Planning for climate change: Identifying minimum-
dispersal corridors for the Cape Proteaceae. 
Conservation Biology 19, 1063-1074. 

Williams P., Kemp J., Parsons M., Devlin T., Collins E., 
Williams S. (2005b) Post-fire plant regeneration in 
montane heath of the Wet Tropics, North-Eastern 
Queensland. Proceedings of the Royal Society of 
Queensland 112, 63-70. 

Williams P., Parsons M., Devlin T. (2006b) Rainforest 
recruitment and mortality in eucalypt forests of the 
Wet Tropics – refining the model for better 
management. Bushfire Conference Life in A Fire-
Prone Environment: Translating Science Into 
Practice. Brisbane. 

Williams R.J., Bradstock R.A., Cary G.J. et al. (2009) 
Interactions between climate change, fire regimes 
and biodiversity in Australia - a preliminary 
assessment. Department of Climate Change and 
Department of the Environment, Water, Heritage 
and the Arts, Canberra. 

Williams S.E. (1996) Distributions and biodiversity of the 
terrestrial vertebrates of Australia's Wet Tropics: a 
review of current knowledge. Pacific Conservation 
Biology 2, 327-362. 

Williams S.E., Bolitho E.E., Fox S. (2003) Climate change 
in Australian tropical rainforests: an impending 
environmental catastrophe. Proceedings of the 
Royal Society of London Series B-Biological Sciences 
270, 1887-1892. 

Williams S.E., VanDerWal J., Isaac J.L. et al. (2010) 
Distributions, life-history specialization, and 
phylogeny of the rain forest vertebrates in the 
Australian Wet Tropics. Ecology 91, 2493. 

Witt G.B., Harrington R.A., Page M.J. (2009) Is 
"vegetation thickening" occurring in Queenslands 
mulga lands – a 50 year aerial photographic analysis. 
Australian Journal of Botany 57, 572-582. 

Woinarski J.C.Z., Brock C., Armstrong M., Hempel C., 
Cheal D., Brennan K. (2000) Bird distribution in 
riparian vegetation in the extensive natural 
landscape of Australia's tropical savanna: a broad-

scale survey and analysis of a distributional data 
base. Journal of Biogeography 27, 843-868. 

Wood A., Booth D.T., Limpus C.J. (2014) Sun exposure, 
nest temperature and loggerhead turtle hatchlings: 
Implications for beach shading management 
strategies at sea turtle rookeries. Journal of 
Experimental Marine Biology and Ecology 451, 105-
114. 



 

 Adaptation Pathways and Opportunities for the Wet Tropics NRM Cluster region 

 
75 

 

Precis  
In this chapter, we compile climate change adaptation options for ecosystem services for the Wet Tropics Cluster 
(WTC) region, derived from the Australian literature and elsewhere. We focus particularly on water regulation, climate 
regulation, carbon sequestration, agricultural production, timber production, habitat provision, erosion control, and 
traditional values. We also discuss emerging opportunities that may become available in WTC region in the future, 
bring together the limitations and constraints of current payments for carbon abatement and discuss possible ways to 
establish payments for ecosystem services through examination of examples from across the world that may be 
applied to the WTC region. Finally, we discuss the barriers to climate adaptation in regard to ecosystem services. The 
key messages associated with each of the topics addressed in this chapter are: 

TOPIC KEY MESSAGES 

Introduction 70. Natural ecosystems have a low adaptive capacity in the face of rapid climate change. 

71. Both short- and long-time planning are required. 

Water regulation and 
water provision 

72. Management practices that maintain or restore ground cover & riparian vegetation are required for 
protection of water quality. 

73. Water sensitive design at both macro- and micro-scales is required. 

Coastal protection 
and erosion control 

74. Protection and landward facilitation of mangroves are both necessary for coastal protection from 
tropical cyclones, storm surges, sea-level rise and salinity intrusion. 

75. Restoration of littoral forests will reduce the vulnerability of coastal communities to extreme climate 
events like tropical cyclones, storm surges and sea-level rise and will potentially minimise coastal 
erosion. 

76. Coastal plantations with robust native tree species will build resilience to anticipated increases in 
tropical cyclone wind speeds and storm surge threats. 

77. Hybrid engineering will be useful in places where natural ecosystem-based protection is not 
sufficient or feasible. 

3. Ecosystem services: adaptation pathways and 
opportunities 

Mohammed Alamgir, Edison M. Salas, Stephen M. Turton and Petina L. Pert 

IN A NUTSHELL 

 An appropriate system for payment for ecosystem services is required. 

 Carbon abatement projects are influenced by national and international pricing and trading schemes. 

Abatement projects are currently limited by frequent policy shifts, a lack of funding and complexity in 

approaches. Carbon plantings have the potential to mitigate CO2 as well as to provide wildlife habitat, 

increase landscape functional connectivity & protect water quality.  

 Integrated farm management has the potential to deliver benefits for biodiversity conservation, 

ecosystem service provision and farm productivity. 
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TOPIC KEY MESSAGES 

78. Re-establishing native vegetation in beaches, dunes and barrier Islands will increase the climate 
adaptation potential of these systems. 

Carbon 
sequestration 

79. There is high potential for more carbon sequestration and storage through improved management 
practices, environmental planting, mixed farming and land rehabilitation. 

80. Native species with relatively high wood density and slow growth rates are more likely to store 
carbon for a long time. 

81. There should be consideration of potential limitations to C sequestration on rangelands. 

Habitat provision for 
biodiversity 

82. Integrated farm management has potential benefits for biodiversity as well as farm productivity. 

83. Ongoing and enhanced invasive species management is required. 

Timber provision 84. More emphasis on cyclone-resistant tree species is required. 

85. Forest management practices may affect climate change resilience. 

86. Opportunities to increase growth rates due to elevated CO2 should be taken advantage of where 
practical. 

Traditional values 87. Incorporating local and Indigenous knowledge in formal decision-making about ecosystem services 
and climate change adaptation is important. 

88. Enhancing Indigenous adaptation options and community-based adaptation is useful. 

89. Strong linkages between local knowledge and formal science are required. 

Marine ecosystem 
services 

90. Maintaining continuous native vegetation cover in the terrestrial ecosystems will reduce some 
stressors on the Reef and will increase its resilience to climate change. 

Barriers in current 
mechanisms 

91. Lack of sufficient funding is an ongoing concern. 

92. Frequent government policy shifts are not helpful. 

93. Complexity of methods and approaches is discouraging for many stakeholders. 

94. Uptake of adaptation measures depend on attitudes beliefs and perceptions about climate change by 
members of the society and their level of exposure to mass media. 

Mechanisms for 
establishing 
payments for 
ecosystem services 

95. An appropriate process is required for payment for ecosystem services. 

 

Introduction 

Natural ecosystems have a low adaptive capacity in 
the face of rapid climate change. 

Both short- and long-time planning are required. 

Ecosystem services are the benefits people derived 
from ecosystems (MA 2003, 2005) including the 
provision of food, fibre, timber and water, climate 
regulation, nutrient cycling, and habitat provision for 
biodiversity. Ecosystem services are an essential 
element of community wellbeing but are under serious 
threat from global climate change (Stafford Smith & Ash 
2011; Pert et al. 2014) and from the current push for 
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economic development above social, cultural and 
environmental considerations by current state and 
federal governments (Pert et al. 2014). NRM managers 
will be required to respond at differing temporal and 
spatial scale to ensure the sustainable supply of 
ecosystem services (Lawler 2009). 

Natural ecosystems have a high vulnerability to climate 
change because both their coping range and adaptive 
capacity are low. Thus even below a 2°C temperature 
change – relative to 1990 – there will be significant 
negative effects on natural ecosystems (Stafford Smith 
& Ash 2011). Therefore adaptation strategies should 
start as soon as possible. In addition to natural 
ecosystems, coastal communities and water security 
are highly vulnerable to climate change impacts 
(Stafford Smith & Ash 2011). 

Decision making in the face of adaptation to climate 
change is difficult due to the uncertainty involved in the 
projected magnitude of climate change (Jones & 
McInnes 2004; Stafford Smith et al. 2011).It is even 
more difficult for the WTC region due to complex 
landscape features and various environmental 
gradients. Therefore, both short- and long-time 
decisions are required. For example, urgent decisions 
about water savings and storage measures are 
required, especially in northern parts of the WTC 
Region (Cape York and Torres Strait) that experience 
pronounced dry seasons. Lawler (2009) has pointed out 
a triage classification for ecosystems management 
under climate change threat considering value of 
ecosystems (ecological, economic and social value) and 
severity of climate change impacts (Figure 3.1). Some 
systems require immediate action otherwise they may 
be lost forever, for example rare systems or species, 
species with high interaction strength and in some 
systems-high priority only a few years waiting is 
possible before the management actions, if closely 
monitored. Other systems (low priority and no 
management) either require management actions in 
the long run or no management actions. These systems 
wouldn’t be lost if there is no management actions 
soon. These systems require monitoring. Considering 
this classification, it is likely that for the WTC Region, 
immediate actions are required for many ecosystem 
services including coastal protection and erosion 

control due to the projected and apparent severe 
tropical cyclone and associated impacts (IPCC 2013; 
Turton 2008, 2014) and habitat provision for 
biodiversity for iconic species due to projected habitat 
loss resulting from temperature rise and seasonal 
rainfall variability (Hilbert et al. 2001; Williams et al. 
2003). 

 

Figure 3.1 Triage classification for ecosystem services 
management in a changing climate  

Source: adapted from Lawler (2009) 

Specific ecosystem services 
In this section we examine specific ecosystem services 
that are most relevant to the Wet Tropics Cluster 
region. Appendix 3.1 provides a summary for planners. 

Water regulation and water provision 

Management practices that maintain or restore 
ground cover and riparian vegetation are required for 
protection of water quality. 

Water sensitive design at both macro- and micro-
scales is required. 

Both water regulation and water provisioning services 
are among the most important ecosystem services 
provided in the WTC region. It is well recognised that 
healthy upstream vegetation cover can deliver high 
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quality water in downstream environments, including 
the Great Barrier Reef lagoon (Calder et al. 2007). 
Upstream vegetation also has profound influences on 
regulating runoff and flood mitigation to downstream 
users (Baral et al. 2012). Fewer disturbances to 
vegetation cover will also reduce outside stressors so as 
to increase climate resilience. Woody vegetation – 
including mangroves – may also remove sediment and 
nutrient pollutants from runoff (Baral et al. 2012) 
eventually helping to maintain water quality. 

Riparian vegetation has a profound influence on 
maintaining water regulation, water quality and water 
temperature. Riparian vegetation reduces stream 
temperatures and creates cool water refugia (Palmer et 
al. 2008; Scott et al. 2008). Riparian vegetation is likely 
to increase the ability of cold-water micro fauna to 
persist in rising temperature through protecting 
headwaters, and identifying and protecting existing 
thermal refugia (Hansen et al. 2003; Chapter 2, this 
report). Riparian vegetation also provides important 
habitat for many terrestrial fauna and flora and may 
provide functional connectivity through disturbed 
landscapes, enabling dispersal. A healthy riparian zone 
filters sediments and slow down overland water flow, 
which subsequently provides water quality benefits to 
the community (Burgman et al. 2007). The restoration 
of riparian vegetation is an important option for 
adaptation to climate change. Selection of trees species 
should include consideration of resilience to cyclones; 
after Severe Tropical Cyclone ‘Larry’ it was found that 
trees in riparian zones were more severely damaged 
than those in nearby forests fragments (Bruce et al. 
2008).  

Climate change is projected to lead to increased 
variability in rainfall and more intense extreme rainfall 
events in the WTC region (Turton 2014). This will 
potentially mean longer dry periods as well as more 
frequent, prolonged and extensive freshwater 
inundation events. Higher rates of evapotranspiration 
will interact with these changes and may exacerbate 
water shortages, especially during the dry season. A 
number of management actions are available to 
regulate water flow in stream channels such as flood 
plain restoration, channel reconfiguration and bank 
stabilisation. Creating off-channel basins and wetlands 

to store water during extreme flows may prevent 
excessive downstream flows (Palmer et al. 2008). 
Groundwater extraction could also be an option to 
address water shortage in a changing climate although 
it is controversial (Hansen et al. 2003; Refer to Chapter 
4, this report). During the dry season, water savings 
measures are essentially a good option particularly for 
the private use of water.  

Coastal protection and erosion control 

Protection and landward facilitation of mangroves are 
both necessary for coastal protection from tropical 
cyclones, storm surges, sea-level rise and salinity 
intrusion. 

Restoration of littoral forests will reduce the 
vulnerability of coastal communities to extreme 
climate events like tropical cyclones, storm surges and 
sea-level rise and will potentially minimise coastal 
erosion. 

Coastal plantations with robust native tree species will 
build resilience to anticipated increases in tropical 
cyclone wind speeds and storm surge threats. 

Hybrid engineering may be a useful protective 
adaptation strategy in places where natural ecosystem 
based protection is not sufficient or feasible. 

Re-establishing native vegetation on beaches, dunes 
and barrier Islands will increase the climate 
adaptation potential of these systems. 

Mangroves provide coastal protection by reducing wave 
energy, increasing sedimentation, reducing erosion and 
movements of sediments, and reducing water velocities 
(Gedan et al. 2011; Shepard et al. 2011; Spalding et al. 
2014). Mangroves are very efficient in trapping fine 
sediment particles (Wolanski 1995; Young & Harvey 
1996). Mangrove roots also increase soil cohesion, and 
provide an important physical barrier between soil and 
water (Gedan et al. 2011). Wave heights can be 
reduced by 13% to 66% over 100 m of mangroves 
(McIvor et al. 2012a). Storm surge heights can be 
reduced between 4 to 48 cm/kilometre through 
provisioning of mangroves along the coast (Krauss et al. 
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2009; McIvor et al. 2012b; Zhang et al. 2012). 
Therefore, mangrove protection and enhancement are 
both necessary pathways to adaptation to sea level rise, 
extreme climate events like tropical cyclones and 
associated storm surges, and coastal erosion control in 
the WTC NRM region. 

Mangroves move inland if the pace of sea level rise 
allows (Alongi 2008). It was found that mangroves 
nearby Key West, Florida have shifted inland by 1.5 km 
since the mid 1940s under a regime of sea level rise of 
2.3-2.7mm/yr (Ross et al. 2000). In Western Australia it 
was found that mangroves are responding to coastal 
erosion and sea level rise by colonising landwards 
(Semeniuk 1994). If possible, mangroves in the WTC 
region are also likely to move landward in response to 
sea-level rise and coastal erosion. Facilitating this 
natural movement of mangroves would be a potential 
adaptation pathway for coastal protection in the WTC 
region, although many potential sites are currently used 
for agriculture and urban development. Mangrove 
movement may be facilitated through ‘managed 
realignment’, whereby coastal lands are deliberately 
reconnected with tidal systems by opening seawalls and 
filling drainage channels (Spalding et al. 2014). In many 
places across the world using this process of natural 
regeneration of mangroves has taken places and 
accretion processes have been re-established (Linham 
& Nicholls 2010; Luisetti et al. 2011). This method is 
being used increasingly in places where maintenance of 
artificial sea defence is expensive and risky (Spalding et 
al. 2014).  

Littoral (coastal) forests provide a number of ecosystem 
services in the WTC Region (DEWHA 2009; Gallagher et 
al. 2010). They protect areas from erosion, filter 
sediments, nutrients and pollutants and reduce the 
impacts of flooding and storm surge events (Burgman 
et al. 2007; Murphy et al. 2012). They act as a buffer to 
coastal erosion and wind damage (Meier & Figgis 1985). 
They will also protect coastal communities, 
infrastructure such as roads, marinas, and agriculture 
and aquatic industries on floodplain areas of the WTC 
Region during tropical cyclones and associated storm 
surge, and in the face of ongoing sea level rise (Murphy 
et al. 2012; Chapters 4 & 5, this report). Severe tropical 
cyclones can cause major damage to littoral forests and 

riparian vegetation reducing their capacity to provide 
essential ecosystem services. For example, heavy 
damage of littoral rainforest with melaleuca trees 
occurred north of Cardwell following Category 5 Severe 
Tropical Cyclone ‘Yasi’ (Murphy et al. 2012). Coastal 
erosion can lead to seawater intrusions into wetlands 
negatively impacting on biodiversity, tourism and 
recreation (Environment Planning 2011), and leading to 
the loss of public assets such as beaches and protective 
dune systems (Bustamante et al. 2012; Williams et al. 
2012). Restoration of littoral forests may help protect 
remaining freshwater wetlands from seawater 
intrusions. Therefore protection and restoration of 
littoral forests will have profound positive impacts on 
coastal communities, terrestrial ecosystems and aquatic 
ecosystems in the face of climate change. Protection of 
littoral forests is potentially one of the least cost 
measures for the WTC Region. 

Use of coastal plantations is a well-implemented 
concept across the world for coastal protection and 
erosion control with 375,000 ha of coastal plantations 
having been established across the world, mainly for 
coastal protection (Spalding et al. 2010). Therefore 
coastal plantations comprising robust native tree 
species will build resilience to anticipated increases in 
tropical cyclone winds and ocean storm surge threats in 
the WTC Region. As the primary target is coastal 
protection and erosion control rather than production, 
larger plantation widths with closer tree spacing using 
cyclone-resistant tree species would be desirable.  

Hybrid engineering is the combination of hard 
engineering and green engineering applications to 
mitigate river and coastal erosion threats (Spalding et 
al. 2014). Green engineering may not be sufficient in 
some areas to ensure coastal protection and hard 
engineering solutions may not be acceptable due to the 
economic and, social costs (Spalding et al. 2014) or 
biodiversity impacts. However, in some parts of the 
WTC NRM Region, hybrid-engineering solutions may be 
an adaptation pathway to provide rapid and effective 
protection for coastal communities and adjacent 
agricultural, urban and sensitive protected areas. For 
example the revegetation of hard engineering sites on 
riparian zones in the WTC Region. 
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Beaches, dunes and barrier islands built of sand are 
sediment reserves and subsequently an important 
component of adaptation pathways in the face of sea 
level rise and storm surge threats (Defeo et al. 2009). 
Dunes have significant positive impacts on reducing 
wave and storm surge thereby protecting coastal 
communities and reducing erosion during extreme 
events like tropical cyclones (Ba Thuy et al. 2009). It is 
necessary to ensure vegetation presence for the 
effective structure and stability both of dunes and 
barrier islands (Bhalla 2007; Feagin et al. 2010). Coastal 
protection functions of dunes and barrier islands are 
reduced by vegetation removal or introduction of exotic 
species (Bhalla 2007; Feagin et al. 2010), and by hard 
structures/coastal development that are interfering 
with natural coastal processes, erosion and deposition 
patterns.  

Carbon sequestration 

There is high potential for more carbon sequestration 
and storage through improved management practices, 
environmental planting, mixed farming and land 
rehabilitation. 

Native species with relatively high wood density and 
slow growth rates are more likely to store carbon for a 
long time. 

There should be consideration of potential limitations 
to C sequestration on rangelands. 

Australia’s soils and forests store large quantities of 
carbon; however they also emit a large quantity of 
carbon due to land use change, e.g. savanna burning 
due to both naturally caused wildfires and planned 
burning for pasture management (Battaglia 2011). 
Agroforestry is a potential adaptation option for 
generating multiple benefits such as carbon 
sequestration, watershed management and biodiversity 
restoration (George et al. 2012). Landscape 
rehabilitation and mixed farming - including integrating 
trees with farming - are likely to improve soil health, 
and increase carbon sequestration and storage 
(Battaglia 2011). Among the different planting options 
environmental plantings have the highest potentiality 
to sequester and store carbon (George et al. 2012). The 

WTC Region has the potential to increase carbon 
sequestration and storage in both plants and soils by 
forest restoration and mixed farming. Ongoing 
environmental plantings need to be enhanced and 
implemented at the landscape scale.  

A study of replanted trees (Curran et al. 2008) found 
that those species with high wood density had been 
less damaged by cyclonic winds during cyclone ‘Larry’. 
Higher wood density, long-lived large trees with 
extensive root systems are more useful to store carbon 
in the long term (Murphy et al. 2012). Scattered trees 
will also reduce the risk of carbon release by fire, pests 
and tropical cyclones, together with their secondary 
positive impacts on water supply (Battaglia 2011).  

Rangelands emit carbon to the atmosphere mainly from 
three different sources- land use change and 
management, livestock and savanna burning (Cook et 
al. 2010). In tropical savannas fuel decomposition rates 
are high and equilibrium fuel loads are reached within 
3-5 years (Cook et al. 2010; Cook 2003), therefore 
reducing fire frequency likely to reduce carbon emission 
to the atmosphere (Cook et al. 2010). Improved grazing 
management is essentially an important pathway to 
adapt with climate change. For improved grazing 
potential options could be managing shelterbelts, 
improving grass, time control rotational grazing and 
avoiding over stocking. Improved grazing will enhance 
carbon sequestration potentials of rangelands and will 
reduce carbon emissions. It will also provide other co-
benefits, such as biodiversity conservation. A 
substantial amount of carbon is stored up to 1 m depth 
in the soil of rangeland and savanna soils (Baker et al. 
2000). Harms and Dalal (2003) have reported a 7.9% 
decline of soil carbon stock to a depth of 0.3m after 
clearing of Acacia and Eucalyptus woodlands and 
savannas for cattle grazing in Queensland, which is 
nearly 260 Mt CO2- e (National Land and Water 
Resources Audit 2001). A study in Bundaberg (Schulke 
undated) has found that thinning may increase grass 
production only in the short term. Woodland clearing 
for grazing is detrimental for the environment and in 
most of the cases not economically viable (Cook et al. 
2010). Therefore, in the WTC Region, lands that are 
now managed for grazing could be significantly 
improved with better grazing management. 
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Habitat provision for biodiversity 

Integrated farm management has potential benefits 
for biodiversity as well as farm productivity.  

Ongoing and enhanced invasive species management 
is required. 

Integrating trees into farming landscapes and 
strategically retaining strips of regrowth in pastoral 
landscapes, are both likely to have little impact on farm 
productivity (Battaglia 2011); if applied correctly the 
impact on farm productivity will be positive. These 
trees can provide habitat for wildlife (including 
‘stepping stones’ to enable movement) and shelter 
from extreme climate events such as heat waves, 
floods, storm surges and tropical cyclones. These trees 
will also have an influence on microclimate at the local 
scale, thereby reducing local air temperatures. These 
trees can help to increase the soil fertility; more 
importantly nitrogen, enhanced nutrient cycling, 
reduced stressed on livestock, soil health (which brings 
in the often neglected component of microbial 
biodiversity). These trees are also vital in the cycling of 
Molybdenum a key limiting factor in Azitobacter and 
nitrogen fixation (G. Kay 2014, personal 
communication).  

Some invasive species may benefit from changing 
temperature and rainfall patterns, as well as increased 
atmospheric CO2 (Dukes & Mooney 1999; Chapter 2, 
this report). Invasive plants may also inhibit natural 
regeneration and colonisation of native species 
(Murphy et al. 2012). Disturbances also create more 
favourable conditions for plant invasions (Laurance 
1991, 1997). Large-scale disturbances like tropical 
cyclones which are predicted to increase in intensity in 
the WTC Region (Turton 2014) may promote the 
recruitment and spread of invasive species (Murphy et 
al. 2012) over native taxa. These processes will likely 
interact with other disturbances. For example, after 
Tropical Cyclone ‘Larry’ in the Babinda-Tully area, it was 
found that woody weeds grew more quickly, showed 
low mortality rates and persisted over a longer time 
frame in the fragmented landscapes compared with 
intact forest areas (Murphy et al. 2008a, Murphy et al. 
2010; Murphy et al. 2008b, Turton 2008). 

Timber provision 

More emphasis on cyclone-resistant tree species is 
required. 

Forest management practices may build climate 
change resilience. 

Opportunities to increase growth rates due to 
elevated CO2 should be taken advantage of where 
practical. 

Australian native conifers (hoop/Kauri pine) are more 
likely to be resistant to tropical cyclones than exotic 
pine species (Timber Queensland 2012). A study after 
Cyclone ‘Larry’ found that Backhousia bancroftii 
(Johnstone River Hardwood/ Langdon's Hardwood) was 
more resistant to cyclonic winds than many other tree 
species in the WTC Region (Metcalfe et al. 2008). This 
tree grows in a wide range of altitudes from sea level to 
700m (Australian Tropical Rainforests Plants). Tree 
resistance to cyclones is influenced by seed provenance 
and seeds sourced from regions that have evolved in 
environments where cyclones occur frequently are 
likely to more resistant to strong wind events. In the 
areas affected by Cyclone ‘Yasi’ in 2011 it was found 
that the Cuban-sourced exotic pine (Pinus caribaea) - 
which is regularly subjected to strong coastal winds - 
was less affected than mountain Honduras-sourced 
exotic pine of the same species (Timber Queensland 
2012).  

Some forest management practices may build forest 
plantation resilience to climate change. For example 
mixed-species plantings can minimise impacts from 
pest outbreaks, and wide-spacing of trees may 
minimise impacts from forest fires (Dale et al. 2001; 
Joyce et al. 2008), and prescribed burning by reducing 
fuel loads (Spittlehouse & Stewart 2003; Scott et al. 
2008). In the WTC Region, appropriate prescribed 
burning regimes and mixed plantings are potentially 
important adaptation pathways under climate change.  
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Traditional values  

Incorporating local and Indigenous knowledge in 
formal decision-making about ecosystem services and 
climate change adaptation is important. 

Enhancing Indigenous adaptation options and 
community-based adaptation is useful. 

Strong linkages between local knowledge and formal 
science are required. 

Scientists have found that local communities’ 
knowledge is useful in climate change science and 
policy (Chaudhary & Bawa 2011; Chapter 6, this report). 
Indigenous adaptation options are usually based on 
long-term practice, experience and observation of 
communities. If there is an Indigenous adaptation 
option in place then government and other 
organisations should assist to increase their adaptive 
capacity, e.g., by providing training, and financial 
incentives to facilitate a continuous flow of ecosystem 
services in landscapes. Community-based adaptation is 
a popular concept, especially in developing countries 
and places where communities are dependent on forest 
resources. This approach is also applicable to areas in 
the WTC Region, especially remote areas such as Cape 
York (details in Chapter 6, this report). Working with 
Indigenous groups to manage places of particular 
cultural significance may be an important adaptation 
option in the face of climate change. 

Strong linkages between local knowledge and formal 
science are required for successful adaptation 
strategies. Climate change is a long-term phenomenon 
and decision-making is problematic, as various 
uncertainties exist. Adaptation should also be placed 
before the more serious negative impacts take hold. 
Indigenous knowledge may help to identify the impacts 
and also to identify the areas where immediate action 
is needed to build resilience to climate change. 
Scientists have found similarities between Indigenous 
knowledge-based identification of climate change 
impacts and traditional science based identification of 
impacts (Chaudhary & Bawa 2011).  

Marine ecosystem services  

Maintaining continuous native vegetation cover in 
terrestrial ecosystems will reduce some stressors on 
the Reef and will increase its resilience to climate 
change. 

Marine ecosystems are already under threat from 
climate change (Chapter 2, this report). The Great 
Barrier Reef’s health and hence resilience are negatively 
impacted by terrestrial sediment runoff (Bustamante et 
al. 2012). Other stresses like nutrients and pesticides 
from agricultural lands, land clearing and other land 
uses increase the vulnerability of marine ecosystems. 
Sediments and nutrients load in the Great Barrier Reef 
due to extensive clearing of low land vegetation for 
agriculture, ground cover disturbances, and agricultural 
practices have already been reported (Murphy et al. 
2012). So managing terrestrial catchment vegetation 
cover to minimise runoff is an important adaptation 
pathway which will increase the reef’s resilience to 
climate change and other stressors, such as coral 
bleaching and rising acidity (Bustamante et al. 2012).  

 

Barriers of current 
mechanisms for adapting to 
climate change 

Lack of sufficient funding is an ongoing concern. 

Frequent government policy shifts are not helpful. 

Complexity of methods and approaches is 
discouraging for many stakeholders. 

Uptake of adaptation measures depend on attitudes 
beliefs and perceptions about climate change by 
members of the society and their level of exposure to 
mass media. 

Current government funding for carbon offset schemes 
is insufficient and the gains in protection will be 
outweighed by the rapid loss of biodiversity and 
ecosystem services. Funding cuts to regional 
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organisations presents a great challenge to promoting 
adaptation mechanisms since as a result - for example - 
some organisations may have to reduce staff members 
who closely work with stakeholders in this area (van 
Oosterzee et al. 2013). One of the main barriers for 
current adaptation mechanisms is that regulations are 
often applied to promote adaptation actions but little 
importance is given to the fact that these regulations do 
not always provide enough funding to engage 
stakeholders in these enterprises - which in turn - has 
the effect of discouraging people from adopting 
adaptation mechanisms (van de Koppel & Reitkerk 
2000). 

Policy shifts are argued to be an important barrier to 
climate adoption since uncertainty in the direction of 
policies generally tends to discourage stakeholders 
from adopting new methodologies. In Australia there 
have been various shifts in policies such as the Carbon 
Farming Initiative (CFI), where the complex nature of 
the scheme discourages landholders from dealing with 
climate change adaptation and mitigation (van 
Oosterzee 2012). Current financial mechanisms of 
carbon offsets, such as the CFI are complex and require 
high financial investment for project establishment and 
registration (van Oosterzee 2012). Therefore non-
adoption of this type of initiatives by small landholders 
emerges as another barrier. 

Uptake of mechanisms for climate change adaptation 
depends on attitudes and perceptions of the general 
public. Akter and Bennett (2011), in a study carried out 
to households in New South Wales, Australia found 
that: (1) “willingness to pay for climate change 
mitigation is significantly influenced by their beliefs of 
future temperature rise”, (2) “perceptions of policy 
failure have a significant negative impact on 
respondents’ support for the proposed mitigation 
measure” (3) “preferences for the proposed policy are 
influenced by the possibility of reaching a global 
agreement on emissions reduction” and (4) “willingness 
to take action against climate change, both at the 
national and household level, is found to be influenced 
by their level of mass-media exposure”. 

Mechanisms for establishing 
payments for ecosystem 
services  

An appropriate process is required for payment for 
ecosystem services. 

There is the need to develop appropriate mechanisms 
to pay for ecosystem services given that they are vital 
for human wellbeing, are becoming increasingly limited 
and that many of the key services do not have 
substitutes (Farley & Costanza 2010). Payment for 
ecosystem services (PES) is a policy instrument that 
aims to combine ‘market forces’ and ‘environmental 
protection’. Wunder (2005) provided the widely 
accepted definition of PES as a “voluntary transaction 
where a well-defined ecosystem service (or a land-use 
likely to secure that service) is being bought by a 
(minimum one) ecosystem services buyer from a 
(minimum one) ecosystem service provider if and only if 
the ecosystem service provider secures ES provision 
(conditionality)”. PES is structurally similar to other 
‘incentive-based policies’ and the objective of this 
mechanism is to reward individual landholders and 
communities to foster the adoption of activities that 
enhance the continued provision of ecosystem services 
(Jack et al. 2008). The central idea of a PES is to 
encourage ‘external beneficiaries’ of ecosystem 
services to financially support - under defined 
contractual conditions - ‘local landholders’ in order to 
adopt sustainable practices, thereby securing the 
continued provision of the services (Wunder 2005). PES 
may also be of different types (Table 3.1). 

The PES mechanism has developed rapidly during the 
last decade and has gained international attention 
(Perrot-Maitre 2006; Bulte et al. 2008). Payments from 
environmental services have been applied even before 
the term was introduced such as the case of Vittel’s 
private scheme developed and implemented in France, 
in order to protect the aquifer that provides the mineral 
water for the company (Perrot-Maitre 2006). Numerous 
PES mechanisms have been implemented or are under 
implementation, both in developed and developing 
countries. Some PESs are private initiatives, others are 
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run by national and international NGOs or other 
organisations and there are also governmental 
administered schemes. One common characteristic of 

PES schemes is that they are voluntary. Some examples 
have been compiled in Table 3.2. 
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Table 3.1 Types of Payments for Ecosystem Services 

SCHEME TYPES SCHEME DETAILS 

Area- vs. 
product-based 
schemes 

The most common type is area-based schemes, where contracts stipulate land- and/or resource-use caps 
for a pre-agreed number of land units. 

Product-based schemes is the second most common type of PES, where consumers pay a ‘green premium’ 
on top of the market price for a production scheme that is certified to be environmentally friendly, 
especially vis-à-vis biodiversity (as cited in Pagiola & Ruthenberg 2002). 

Public vs. 
private 
schemes 

In public schemes the state acts on behalf of ES buyers by collecting taxes and grants and paying alleged ES 
providers. 

Private schemes are more locally focused and buyers pay directly. Public schemes are generally larger in 
scope and have the state providing legitimacy, which many private schemes struggle hard for. On the 
downside, public schemes can become overloaded with side objectives catering to voters rather than 
supplying ecological services proper, they are less flexible vis-à-vis targeting of strategic ES sellers, and they 
tend to be less efficient in securing additional ES provision. 

Use-restricting 
vs. asset-
building 
schemes 

Use-restricting PES schemes reward providers for conservation (including natural regeneration) for capping 
resource extraction and land development; or for fully setting aside areas, such as for protected habitat. 
Here, landowners are paid for their conservation-opportunity costs, plus possibly for active protection 
efforts against external threats (as cited in Hardner & Rice 2002). 

Asset-building schemes PES aim to restore an area’s ES, for example (re)planting trees in a treeless, 
degraded landscape. Conservation-opportunity and protection costs aside, PES may here also compensate 
the direct costs of establishing ES, often through investments within agricultural systems (as cited in Pagiola 
et al. 2004) 

Source: Wunder (2005) 

Table 3.2 Examples of PES schemes around the world 

PES SCHEME SHORT DESCRIPTION COUNTRY 

Vittel 
(Perrot-Maitre 
2006) 

Vittel mineral water company is providing incentives to farmers to change farming 
practices and technology in order to protect the aquifer to ensure water quality 
(reducing the risk of nitrate contamination from agricultural activities). The negotiations 
between the local landholders and the owners of Vittel started in 1988. 

France 

Conservation 
Reserve Program 
(CRP)  
(Farm Service 
Agency 2013) 

The CRP is voluntary program, administered by the Farm Service Agency (FSA), which 
support farmers to protect “environmentally sensitive land” and enhance conservation 
outputs. The ES targeted are improvement of water quality, avoiding soil erosion and 
conserving and enhancing wildlife habitat. 

USA 

Proambiente Brazil 
(Hall 2008) 

Reduction or avoidance of deforestation, carbon sequestration, recuperation of 
ecosystem hydrological functions, soil conservation, preservation of biodiversity and 
reduction of forest fire risks. The PES scheme was adopted by the Federal Government 
in 2003. 

Brazil 

The Carbon 
Farming Initiative 
(Department of 
Climate Change 
and Energy 
Efficiency 2012) 

The Carbon Farming Initiative is a voluntary scheme that provides landholders with the 
opportunity to access carbon markets, presenting them with an alternative way to 
generate income through the adoption of activities that either sequester carbon dioxide 
or CO2 equivalents (CO2-e) from the atmosphere or reduce greenhouse gas (GHG) 
emissions are considered to earn carbon credits which can be later sold to businesses to 
offset their emissions. The CFI Act was passed in 2011. 

Australia 
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PES SCHEME SHORT DESCRIPTION COUNTRY 

Los Negros Valley 
(Asquith et al. 
2008) 

In this case the USFWS pays for the protection of the habitat for migratory birds and the 
Municipality of Pampagrande pays for the provision or water for irrigation during dry 
season, services provided by the same “upland forest and puna (native central Andean 
alpine grassland) vegetation”. Fundacion Natura Bolivia started PES negotiation in 2003. 

Bolivia 

Regional 
Integrated 
Silvopastoral 
Ecosystem 
Management 
Project 
(Pagiola et al. 
2005) 

This program was carried out from 2002 to 2008. The objectives were to demonstrate 
and measure a) the effects the introduction of payment incentives for environmental 
services to farmers to adopt integrated silvopastoral farming systems in degraded 
pasture lands, and b) the improvements resulting for ecosystems functioning, global 
environmental benefits, and local socio-economic benefits obtained through the 
provision of ES. 

Colombia, 
Costa Rica 
and 
Nicaragua 

Fostering 
Payments for 
Environmental 
Services in the 
Danube Basin 

(WWF 2012) 

This PES scheme promotes the maintenance, improving or adoption of conservation 
friendly land uses in the Lower Danube and Danube delta. Preparations for the PES 
project started in 2002. 

Bulgaria, 
Moldova, 
Romania and 
Ukraine 

 
Waage et al. (2008) propose a four-step approach to 
develop Payments for Environmental Services that are 
presented in Figure 3.2. As a result of the analysis of 
information of a workshop held in Costa Rica, Farley 
and Costanza (2010) recommended measuring, 
bundling, scale-matching, property rights, distribution 
issues, sustainable funding, adaptive management, 
education and politics and participation and policy 
coherence as principles (Table 3.3) to be considered for 
payments for ecosystem services. 

 

Figure 3.2 A Step-by-Step Approach to Developing PES Deals 

Source: Waage et al. (2008). 
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Table 3.3 Principles concerning the use of PES systems 

PRINCIPLES DETAILS 

Measuring We need to continue to develop better methods to measure, map, model, and value ecosystem services at 
multiple scales. At the same time, we cannot wait for certainty and precision to act. We must synergistically 
continue the process of improvement of measurements with evolving institutions that can effectively utilise 
these measurements. 

Bundling Most ecosystem services are produced as joint products (or bundles) from intact ecosystems. The relative 
rates of production of each service varies from system to system and site to site, and time to time, but we 
must consider the full range of services and the characteristics of their bundling in order to prevent creating 
perverse incentives and to maximise the benefits to society. 

Scale-matching The spatial and temporal scale of the institutions to manage ecosystem services must be matched with the 
scales of the services themselves. Mutually reinforcing institutions at local, regional and global scales over 
short, medium and long time scales will be required. Institutions should be designed to ensure the flow of 
information between scales, to take ownership regimes, cultures, and actors into account, and to fully 
internalise costs and benefits. 

Property rights Establishing appropriate property rights regimes is essential for implementing PES systems. However, given 
the public goods nature of most ecosystem services, we can either use existing private property rights, 
change property rights, or develop systems that can propertise ecosystems and their services without 
privatising them. For example, common property asset trusts are one way to effectively do this. 

Distribution 
issues 

The distribution of costs and benefits from PES systems need to be carefully considered. Systems should be 
designed to ensure inclusion of the poor, since they are more dependent on common property assets like 
ecosystem services. In particular, wealthier nations should be prevented from free-riding, and instead pay 
for the services they receive from the biodiverse and ecologically productive ecosystems in less developed 
countries. 

Sustainable 
funding 

PES systems should link beneficiaries with producers. In order to be sustainable, fees should be collected 
from beneficiaries in order to pay producers to continue to provide the services — either by paying private 
land owners or through investments in commonly owned natural capital assets. 

Adaptive 
management 

Given that significant levels of uncertainty always exist in ecosystem service measurement, monitoring, 
valuation, and management, we should continuously gather and integrate appropriate information with the 
goal of learning and adaptive improvement. To do this we should evaluate the impacts of existing PES 
systems and design new systems as experiments from which we can more effectively quantify performance 
and learn. 

Education and 
politics 

Two key limiting factors in implementing PES systems are shared knowledge of how the systems work and 
political will. Both of these can be overcome with targeted educational campaigns, clear dissemination of 
success and failures directed at both the general public and elected officials. 

Participation All stakeholders (local, regional, and global) should be engaged in the formulation and implementation of 
PES systems. Full stakeholder awareness and participation contributes to credible, accepted rules that 
identify and assign the corresponding responsibilities appropriately, and that can be effectively enforced. 

Policy 
coherence 

PES systems will be most effective when they form part of a coherent set of policies to address ecosystem 
use and management. 

They are less likely to work when other policy instruments are providing opposing incentives (for example by 
subsidising the use of water, energy etc.) or when legislation controlling allocation is inflexible 

Source: Farley & Constanza (2010) 
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What if carbon is priced much 
lower? 

Even though the current carbon price seems to be 
relatively high, it may not be profitable for small 
landholders to implement carbon abatement projects. 

The repeal of the Carbon Pricing Mechanism and the 
establishment of the Direct Action Plan and the 
Emission Reduction Plan announced by the current 
government may have a significant impact on the 
carbon price. 

Volatility of carbon prices in the European Union 
Emissions Trading Scheme could have a huge impact in 
the Australian carbon market due to the proposed 
future linking of the markets. 

Uncertainty around future carbon prices reduces the 
willingness of stakeholders to make long-term 
commitments. 

Effective communication to stakeholders about 
additional benefits of carbon sequestration activities is 
needed to counteract an eventual carbon price drop. 

There is the need to continue analysing the 
applicability of Carbon Capture and Storage which 
being tested in Australia as well as internationally. 

The future impact of Carbon Capture and Storage on 
carbon prices is unclear. 

There is not clear evidence in the literature about the 
environmental consequences of a significantly lower 
price of carbon. Nevertheless, as carbon sequestration 
and emission- avoidance projects involve high 
establishment costs, they are highly dependent on 
carbon markets and prices. In Australia, in a study 
carried out mostly large in properties, “several 
thousand hectares in area”, a company estimated that 
the costs, associated with registering and auditing 
environmental planting projects are around 20,000 per 
property. Despite the expectation of lower costs for 
smaller properties, the “fixed costs related to the 

preliminary assessment and project management will 
be the same regardless of project size” (Knudsen & 
Putland, 2012). 

Correspondingly, van Oosterzee (2012) states that the 
returns will not cover the costs resulting from 
registering the rights to the carbon and other expenses 
such as survey, plan preparation or forest 
establishment costs which contradicts “the expectation 
that forests deliver low-cost abatement”. With carbon 
prices ranging from $23 a tonne in 2012 to $25.40 in 
2015 (Australian Government, 2013a; Commonwealth 
of Australia, 2012), the expected income ranges from 
$160 to 345 ha/year (Knudsen & Putland, 2012). This 
implies that these types of plantations would only be 
profitable for large-scale farms. Consequently, it can be 
assumed that a low price of carbon in national and 
international markets could provoke discouragement 
for stakeholders to setup new GHG-abatement projects. 

The European Union Emission Trading Scheme (EU ETS) 
is the biggest carbon market in the world, operating in 
the 28 EU members and three associated member 
states belonging to the European Economic Area (EEA) 
and the European free trade Association (EFTA) 
(European Commission 2014a). The EU ETS set prices 
for carbon emission of about 11,500 high-energy 
consuming industries, covering the 46% of European 
emissions, since 2005 (Alberola et al. 2008). The EU ETS 
and the Australian carbon markets are setting “the first 
full inter-continental linking of emission trading 
systems”. This “full two-way link” market will start 
around July 2018. In the meantime, from July 2015 an 
“interim link” will allow Australian businesses to offset 
their emissions using EU ETS allowances (Australian 
Government 2013b; European Commission 2014b). 
Although, the plan to link the European and Australian 
carbon markets was announced in 2012 (Australian 
Government 2013b; European Commission 2014b), 
uncertainty for this to happen persists. 

Fluctuations of carbon markets/prices can have 
important impacts on carbon abatement projects. In a 
study conducted on the UE ETS, Feng et al. (2011) state 
that “the carbon market is a complex volatility model” 
as prices can be affected by different factors such as 
power prices, weather and traders’ behaviour. In the 
same context the Parliament of Australia (2012) 
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conveys that the fluctuation of carbon prices in the EU 
ETS (Figure 3.3) are driven by different market factors 
such as offer and demand, but also economic, financial 
and environmental factors including: industrial 
production, financial markets, energy prices and 
weather as well as policy issues and uncertainty of 
policy shifts. 

In Australia, since the start of the Carbon Pricing 
Mechanism (CPM), July 2012, the price per ton of  
CO2-e, for the fixed price, was set at AU$ 23 in 2012–13, 
$24.15 in 2013–14, and $25.40 for 2014–15. In 2015, 
from the flexible period, the price will be set by the 
market (Australian Government, 2013a; 
Commonwealth of Australia, 2012). According to 
Commonwealth of Australia (2012), during the flexible 
period, 2015 to 2018, a price floor AU$ 15, and a price 
ceiling, AU$ 20 higher than the expected international 
price, were to be set. However the Australian carbon 
market is experiencing critical changes. On one hand, 
the repeal of the CPM, which will “abolish the carbon 
tax from 1 July 2014” and the establishment of the 

Direct Action Plan and Emission Reduction Plan has 
been announced by the current government (Australian 
Government 2014). Furthermore, there will not be a 
floor price per ton of CO2-e due to the linking with the 
EU ETS (Mansell & Sopher 2014), which could have an 
impact on the price of carbon adding more uncertainty 
to the carbon market. 

It is necessary to share information effectively with 
stakeholders about the benefits resulting from the 
adoption of carbon sequestration activities, which could 
be crucial to counteract negative impact of an eventual 
drop of carbon prices. Mechanisms to pay for carbon 
sequestration are justified because the adoption of new 
farming activities may present some risk to farmers. 
Nevertheless, there are additional important economic 
and environmental benefits (Table 3.4) resulting from 
the adoption of “conservation agricultural systems” 
(FAO and CTIC 2008). 

 

Figure 3.3 Prices of Carbon in EU ETS 2008-2012  

Source: Parliament of Australia (2012). 
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Carbon capture and storage (CCS) also called geological 
sequestration or geosequestration that refers to the 
process of capturing carbon dioxide emitted from 
burning fossil fuels, which then is compressed, 
transported to an adequate geological formation that 
will be used as storage and then injected (CO2CRC 
2011; Metz et al. 2005). Carbon capture and storage is 
not a new or untested technology, oil and gas industries 
have been using it for around forty years to improve 
recovery of oil and gas (New South Wales Trade and 
Investment 2014). CCS can be applied to industries that 
produce large amounts of carbon dioxide, production of 
natural gas, synthetic fuel production, etc. (Metz et al. 
2005). Various demonstration projects in execution or 

planned in Australia, including 3 in Queensland 
(CO2CRC 2011) : CarbonNet Project, Victoria (CCS 
Flagship Project), South West Hub Project, Western 
Australia (CCS Flagship Project), Surat Basin Integrated 
CCS Project, Queensland, Callide Oxyfuel Project, 
Queensland, CO2CRC Otway Project, Victoria, The 
Gorgon Project, Western Australia, GDF SUEZ Australian 
Energy Carbon Capture Plant, Victoria, AGL Loy Yang 
Project, Victoria, CO2CRC UNO Mk 3 Project, Vales Point 
Power Station, New South Wales, CSIRO Vales Point 
PCC Project, CO2CRC Membrane CO2 Capture Facility, 
Tarong PCC Project, Queensland, NSW CO2 Storage 
Assessment Program.

  

In a report about costs of CCS in EU, Zero Emissions Platform (2011) states that “Post 2020, CCS will be cost-

Table 3.4 Key environmental and economic services that can be derived from conservation agricultural systems. 

FINANCIAL BENEFITS FOR FARMERS BENEFITS TO COMMUNITIES & SOCIETY ENVIRONMENTAL BENEFITS 

Greater yields and improved yield 
stability invariable weather 

More reliable and cleaner water 
supplies resulting in lower treatment 
costs 

Favourable hydrologic balance and 
flows in rivers to withstand extreme 
weather events 

Reduced fuel and labour requirements Less flooding due to better water 
retention and slower runoff, resulting in 
less damage to roads, canals, ports and 
bridges 

Reduced incidence and intensity of 
desertification 

Greater resilience to drought through 
better water infiltration and retention 

Improved air quality with less wind 
erosion 

Increased soil biodiversity 

Alleviation of labour deman at key times 
in the year, permitting diversification 
into new on-farm and off-farm 
enterprises 

More secure food and water sources Less soil erosion resulting in less 
sediment in rivers and dams 

Better cycling of nutrients and avoiding 
nutrient losses 

Economic and industrial development 
opportunities 

Potential for reduced emissions of other 
greenhouse gases, including methane 
and nitrous oxide, if compaction is 
avoided 

Higher profit margin with greater input-
use efficiency 

Improved quality of life Reduced deforestation due to land 
intensification and more reliable and 
higher crop yield 

Increasing land value due to progressive 
improvements in environmental quality 

 Less water pollution from pesticides and 
applied fertiliser nutrients 

  Less hypoxia of coastal ecosystems 

Source: FAO and CTIC 2008 
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competitive with other low-carbon energy 
technologies” and that CCS is already being considered 
as a crucial option to fight climate change “within a 
portfolio of technologies”. However, the department of 
Trade and Investment of New South Wales claims that 
internationally CCS is still being demonstrated to gain 
understanding and reduce costs and that commercial 

applications of this technology are not possible yet 
(New South Wales Trade and Investment 2014). There 
is the need to continue with the analysis of this 
mitigation option and the possibilities for application 
within the region. Since CCS is still in trial stages, the 
future impact of CCS on carbon prices is unclear. 
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Summary of adaptation options for ecosystem services 
 

Table 3.5 Major climate change impacts and potential adaptation options for ecosystem services. Adaptation options that also 
potentially mitigate greenhouse gas emissions are marked (M). 

  EXAMPLE ADAPTATION OPTIONS 

Climate change Major impacts Protect Accommodate Retreat 

Increased 
atmospheric CO2 

1. Exacerbate all climate 
change impacts 

 Sequester more 
carbon through 
environmental 
plantings using 
longer-lived  species 
with higher wood 
density and 
extensive root 
systems (M);  

 Limit clearing of 
woodlands and 
savannas to protect 
soil carbon stocks 
(M); 

 Integrate trees with 
farming practices 
(M); 

 Reduce fire 
frequency in savanna 
systems (M); 

 Manage shelterbelts, 
improve grasses, 
implement rotational 
grazing and manage 
stocking rates (M); 

 Improve carbon 
capture and storage 
technologies (M). 

 

  

Increased 
temperatures 

1. Increased water 
temperatures 

  Maintain and restore 
riparian vegetation to 
create cool water 
refugia (M) 

 

2. Impacts on farm 
productivity (e.g., 
livestock health) 

  Integrate trees into 
farm landscapes, 
including regrowth. 

 

Sea level rise  1. Increased vulnerability of   Conserve landward   
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  EXAMPLE ADAPTATION OPTIONS 

coastal communities due 
to inundation of 
mangrove systems 

sea level rise refugia 
for coastal vegetation 
systems;  

 Facilitate landward 
migration of 
mangroves. 

2. Sea water intrusion into 
freshwater wetlands 

 Conserve and restore 
littoral forests (M) 

 

Extreme events 
(increased 
occurrence of 
high intensity 
cyclones, extreme 
rainfall events, 
heatwaves) 

1. Increased vulnerability of 
coastal communities 
during cyclones, 
especially in combination 
with sea level rise and 
storm surge. 

Hybrid engineering 
defensive measures. 
(e.g., revegetation of 
lard engineering sites 
in riparian zones). 

 Protect & restore 
mangroves, littoral 
forests and vegetation 
on dunes and barrier 
islands (M);  

 Establish protective 
coastal tree 
plantations using 
robust species (M) 

 Managed realignment 
to promote natural 
regeneration of 
mangroves by 
reconnecting coastal 
areas with tidal 
systems. 

 

2. Reduced water quality 
due to sediment and 
pollutant runoff into 
waterways during heavy 
rainfall events 

 Maintain or restore 
ground cover and 
woody riparian 
vegetation to slow 
overland flow and 
reduce soil erosion. 

 

3. Flooding and erosion 
during heavy rainfall 
events 

  Restoration of 
vegetation on 
floodplains (M); 

 Off-channel basins 
and wetlands to store 
water; 

 Channel 
reconfiguration; 

 Bank stabilisation.  

 

4. Damage to the Great 
Barrier Reef system 

 Conserve and restore 
native vegetation 
cover in reef 
catchment area (M) 
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  EXAMPLE ADAPTATION OPTIONS 

 5. Damage to agroforestry   Select more resistant 
species. Source seed 
from areas subject to 
cyclones; 

 Use mixed-species 
plantations to 
increase resilience 
e.g., to pest 
outbreaks.    

 

More variable 
rainfall 

1. Reduced availability of 
freshwater 

  Water sensitive 
design at micro- and 
macro-scales; 

 Groundwater 
extraction; 

 Water savings 
measures, esp. during 
the dry season. 
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Barriers to potential 
adaptation options  

Scepticism and misinformation about climate change 
science are an ongoing issue 

There are uncertainties about the magnitude of 
climate change effects. 

Linkages among policy-makers, researchers and 
landholders need to be improved. 

Well-developed evaluation tools for assessing 
adaptation options are a priority. 

There is a strong mindset that all climate adaptation 
options are expensive. 

In Australia ongoing scepticism is a barrier for 
adaptation to climate change (Hennessy 2007). 
Scepticism is a real problem for climate change 
adaptation because it influences the attitude of 
different stakeholders to not act to deal with 
anticipated costs and benefits of climate change. 
Inadequate information flow about climate change is 
also a barrier to adaptation (Rodriguez et al. 2009). 

Climate change is a very long-term phenomenon and it 
is also very difficult to precisely predict what the future 
may be. Although there is a strong consensus about the 
climate change impacts on different ecosystem services 
like water provision, carbon sequestration, agricultural 
production and habitat provision, uncertainty exists 
about the level of magnitude, which also discourages 
the community to act to adapt with climate change in 
the short term. Uncertainty in climate change 
projections – particularly rainfall - is a barrier to climate 
change adaptations in Australia (Hennessy 2007). 

In Australia climate change related policy and 
regulations always varies with changes in government 
at all levels, despite the fact that long-term 
commitment is required from the NRM adopters to 
receive any incentives from governments. 

The linkage among various strata of government - from 
national to local - regarding climate adaptation policy, 

plans and requirements is weak in Australia (Hennessy 
2007), which hinders or delays the adaptation options 
in the NRM sector. Potential adopters are rarely 
interested to adopt something if they know little or 
nothing about it (Rodriguez et al. 2009). Lack of on-farm 
trials and demonstrations, and lack of sufficient 
institutional support, are all barriers to adaptation to 
climate change (Rodriguez et al. 2009). The effective 
evaluation tools for assessing planned adaptation 
options, such as benefit-cost analysis is currently 
lacking (Hennessy 2007). 

In one study Rodriguez et al. (2009) found that the first 
barrier to adoption mentioned by potential adopters 
was the economic factor due the costs involved in the 
process of adoption. So community people think that 
most of the climate adaptation process involved a huge 
investment but some adaptations are based on only the 
‘best practice; that they are practicing now. Potential 
adopters are also worried about the investment return 
for adaptation (Rodriguez et al. 2009) due to the 
uncertainties in climate change. 

Summary and conclusions  
Ecosystem services are the benefits people derived 
from ecosystems including the provision of food, fibre, 
timber and water, climate regulation, nutrient cycling, 
and habitat provision for biodiversity. Ecosystem 
services are an essential element of community 
wellbeing, but are under serious threat from global 
climate change. NRM managers in the WTC Region will 
be required to respond at differing temporal and spatial 
scale to ensure the sustainable supply of ecosystem 
services. 

The key ecosystem services that apply to the WTC 
Region that will require climate adaptation pathways 
includes: water regulation and water provision; coastal 
protection and erosion control; carbon sequestration; 
habitat provision for biodiversity; timber production; 
traditional values; and marine ecosystem services. 

There are many barriers to current mechanisms for 
effective adaptation to climate change. Current 
government funding for carbon offset schemes is 
insufficient and the gains in protection will be 
outweighed by the rapid loss of biodiversity. Policy 
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shifts are argued to be an important barrier to climate 
adoption since uncertainty in the direction of policies 
generally tends to discourage stakeholders from 
adopting new methodologies.  

There is the need to develop appropriate mechanisms 
to pay for ecosystem services (PES) in the WTC Region 
given that they are vital for human wellbeing, are 
becoming increasingly limited and that many of the key 
services do not have substitutes. Various approaches 
for PES that may be applied within the WTC NRM 
Region have been presented and evaluated. 

There is not clear evidence in the literature about the 
effects that a significantly low price of carbon could 
generate for the environment. Nevertheless, as carbon 
sequestration and emission avoidance projects involve 
high establishment costs, they are therefore highly 
dependent on carbon markets and prices. 

Climate change is a very long-term phenomenon and it 
is also very difficult to precisely predict what the future 
may be. Although there is a strong consensus about the 
climate change impacts on different ecosystem services 
like water provision, carbon sequestration, agricultural 
production and habitat provision, uncertainty exists 
about the level of magnitude, which also discourages 
the community to act to adapt with climate change in 
the short term. Uncertainty in climate change 
projections – particularly rainfall - is a barrier to climate 
change adaptations in Australia, including the WTC 
Region. 
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A1.  Priority issues identified for previous report on impacts of 
climate change (Hilbert et al. 2014). 
 

Physical science – Climate change projections for the wet tropics cluster 

Topics Specific issues 

Scenarios for temperature and rainfall   inc. extreme high and low 

Scenarios for oceans 

 

 sea level changes 

 sea surface temp 

 acidification 

Implications for hydrological cycles and 
water quality  

 

 evaporation 

 point source and diffuse water pollutants 

Change in frequency of extreme weather 
events  

 

 cyclones 

 drought 

 flood 

 storm surge 

 marine intrusion 

 erosion 

Change in fire regimes  

 

Biodiversity 

Topics Specific issues 

Change in distribution and abundance of 
invasive species  

 impacts  

 emergent risks 

 priorities 

 potential adaptation responses 

Change in extent and distribution of 
terrestrial and marine vegetation 
communities 

 consider water stress 

 wetlands, seagrass, mangroves 

 island landscapes 

 limitations on ability to shift (e.g., altitude, coastal development) 

 fire 

Change in abundance and distribution of key 
terrestrial, coastal and marine species 

 esp. Turtles (distribution, heat stress, sex ratio) 

 fish (for harvest but also higher order effects) 

Appendix A  Priority issues for Wet Tropics Cluster 
Natural Resource Management groups  
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 dugong 

 corals (esp. bleaching) 

 cassowary 

 endemic species 

 species of cultural significance 

 range shifts 

 connectivity (incl. condition) esp. migratory species 

 critical thresholds 

 impacts of extreme events 

 vulnerable and resilient taxa 

Implication for disease  Human and wildlife 

 vectors (mosquitoes, birds, pigs) 

 
Socio-cultural-economic 

Topics Specific issues 

Indigenous knowledge of past climate 
adaptation 

 previous land management practices 

 refugia 

 changes in systems 

Impacts on Indigenous culture and 
livelihoods and adaptation opportunities 

 liveability  

 changing resources/access (water, vegetation, key species); 

cultural practices 

 tourism (fire, cyclones, storm surge, infrastructure) 

 adaptation (e.g., carbon abatement/sequestration) 

Impact on human infrastructure, mainland 
and islands 

 sea levels 

 flow events 

 fire 

 cyclones 

 new locations and requirements 

Impacts on rural and primary industries   agriculture (type, scale, productivity; inc sugar cane, mining) 

 adaptation opportunities 

 realistic opportunities for carbon bio-sequestration and 

abatement 

Ecosystem services  Carbon abatement (e.g., fire management) 

 carbon sequestration (marine and terrestrial) 

 revegetation 
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Tourism  Impacts of loss of environmental values (habitats/species) 

 climate changes (e.g., too hot/ more frequent cyclones) 

Cost benefit analysis of adaptation vs BAU  

Changes in land use patterns   economic implications 

 social implications 

Assessment of community (sectors) 
adaptation capacities 

 capabilities 

 interests 

 aspirations 

Changes in practices to build social and 
ecological resilience 

 

 

A2.  Specific additional issues identified for current report on 
potential adaptation options. 

Biodiversity: adaptation pathways and opportunities 

 

Specific taxa/ecosystems/issues:  

Turtle and Dugong 

Reef ecosystems 

Small Island ecosystems 

Lack of connectivity for movement/migration: 

Westward migration of coastal, marine, mangrove communities and dunes (SLR) 

Functional connectivity. Hard infrastructure, urban development, roads, farmland preventing restoration of connectivity; 

Where will translocation be important? 

Fire management to maintain ecological integrity given changed fire conditions 

Reproduction in vegetation communities (inc.temp and rainfall shifts may alter germination conditions); any available 
strategies to maintain microclimates? 

Adaptation pathways for integrated weed management (environmental and agricultural; note herbicide resistance). In 
MWI region, current priority weeds addressed in pest management strategy (avail. On request). Specific weeds that will 
become problems; early detection and intervention program 

Need to shift from maintenance of pre-European systems to enabling adaptation to at least 2 deg. Warming 

Quantified trigger points , e.g., Eungella rainforest will degrade with 1.5 deg rise; increased fire risk in coastal veg with 2 
deg rise; increased evaporation will reduce avail freshwater resources by 5% for every deg of temp rise.  

Local, regional, national, international examples/case studies 

Key considerations/principles for monitoring whether particular actions have intended adaptation outcomes 

Barriers to potential adaptation actions (e.g., social/political/ economic). Potential strategies to surmount barriers or 
enable adaptation actions.  
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Ecosystem services: adaptation pathways and opportunities 

 

Specific ecosystem services:  

Coastal Protection and erosion control 

Carbon sequestration 

Nursery habitat for marine species 

More definitive info about ecosystem services relevant to the cluster or NRM regions 

Mechanisms for establishing payments for ecosystem services 

What if carbon is worth a lot less? Implications for environmental versus carbon offsets 

Key considerations/principles for monitoring whether particular actions have intended adaptation outcomes 

Barriers to potential adaptation actions (e.g., social/political/ economic). Potential strategies to surmount barriers or 
enable adaptation actions.  

Infrastructure: adaptation pathways and opportunities 

 

Specific elements of infrastructure/service provision:  

Maritime services infrastructure 

Energy generation and supply 

Housing 

What types of clean energy suit the cluster region (e.g., cloudy not good for solar) 

Options for soft versus hard infrastructure in adaptation, including comparative economics 

Novel ways to capture and store water for ag and urban (e.g., evaporation from dams) 

Potential for adaptation measures to cause (more) environmental damage (e.g., weirs, bund walls (seawater intrusion), 
rock groynes (sand erosion) 

Local, regional, national, international examples/case studies 

Key considerations/principles for monitoring whether particular actions have intended adaptation outcomes 

Barriers to potential adaptation actions (e.g., social/political/ economic). Potential strategies to surmount barriers or 
enable adaptation actions.  

 

Industry: adaptation pathways and opportunities 

 

Specific industries:  

Fisheries 

How to engage industries in acknowledging there is a problem? 

Reducing methane emissions not an economically viable option for extensive cattle grazing 

The potential for climate change to specifically impact rural best management practices/principles, especially where they 
are based on more precision techniques. What is the possibility that precision-based techniques might increase 
vulnerability of farmers? 

Local, regional, national, international examples/case studies 

Key considerations/principles for monitoring whether particular actions have intended adaptation outcomes 

Barriers to potential adaptation actions (e.g., social/political/ economic). Potential strategies to surmount barriers or 
enable adaptation actions.  
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Indigenous communities, livelihoods & knowledge: adaptation pathways and opportunities 

 

Specific communities/ aspects:  

Building general community resilience 

Building sustainable local economies 

Identifying key drivers of change to culture 

Identifying what aspects of community culture support adaptation and what aspects of culture impede adaptation 

Improving cultural knowledge integration into policy, landuse and land management decisions 

Local, regional, national, international examples/case studies 

Key considerations/principles for monitoring whether particular actions have intended adaptation outcomes 

Barriers to potential adaptation actions. Potential strategies to surmount barriers or enable adaptation actions.  

 

Social impacts: adaptation pathways and opportunities 

 

Specific aspects/ locations/ industry sectors:  

Impacts and role of women in climate change and adaptation  

Impacts of technology 

Will climate change be likely to change the desirability of the WTC region to live? If so, by how much? 

Is climate change likely to change the population carrying capacity for the WTC region? If so, byt how much? 

Local, regional, national, international examples/case studies 

Key considerations/principles for monitoring whether particular actions have intended adaptation outcomes 

Barriers to potential adaptation actions (e.g., social/political/ economic). Potential strategies to surmount barriers or 
enable adaptation actions.  

 

Integration of adaptation pathways and opportunities across sectors  

What is the comparative economics of no adoption versus early or late adoption if adaptation across biodiversity, industry, 
infrastructure impacts etc? 

 

Emerging NRM planning frameworks 

 

Local, regional, national, international examples/case studies 

Barriers to potential adaptation actions (e.g., social/political/ economic). Potential strategies to surmount barriers or 
enable adaptation actions.  

 

Evolving adaptation methodologies and tools 

 

Evaluating different adaptation pathways (principles, criteria, approaches) 

Barriers to potential adaptation actions (e.g., social/political/ economic). Potential strategies to surmount barriers or 
enable adaptation actions.  
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Specific communities/aspects 

building general community resilience 

building sustainable local economies 

identifying key drivers of change to culture 

identifying what aspects of community culture support adaptation and what aspects impede adaptation 

improving cultural knowledge integration into policy, landuse and land management decisions 

Local, regional, national, international examples/case studies 

Key considerations/ principles for monitoring whether particular actions have intended adaptation outcomes 

Barriers to potential adaptation actions. Potential strategies to surmount barriers or enable adaptation 
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Contact Details 
Professor Steve Turton 
+61 7 4042 1292 
Steve.turton@jcu.edu.au 
http://research.jcu.edu.au/research/tess/people/staff/Turton_S 
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